版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年安徽省黃山市休寧縣市級名校中考數(shù)學(xué)最后沖刺模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,立體圖形的俯視圖是A. B. C. D.2.要使分式有意義,則x的取值應(yīng)滿足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣23.衡陽市某生態(tài)示范園計(jì)劃種植一批梨樹,原計(jì)劃總產(chǎn)值30萬千克,為了滿足市場需求,現(xiàn)決定改良梨樹品種,改良后平均每畝產(chǎn)量是原來的1.5倍,總產(chǎn)量比原計(jì)劃增加了6萬千克,種植畝數(shù)減少了10畝,則原來平均每畝產(chǎn)量是多少萬千克?設(shè)原來平均每畝產(chǎn)量為萬千克,根據(jù)題意,列方程為A. B.C. D.4.已知一次函數(shù)y=﹣2x+3,當(dāng)0≤x≤5時,函數(shù)y的最大值是()A.0B.3C.﹣3D.﹣75.給出下列各數(shù)式,①②③④計(jì)算結(jié)果為負(fù)數(shù)的有()A.1個 B.2個 C.3個 D.4個6.已知:如圖,在平面直角坐標(biāo)系xOy中,等邊△AOB的邊長為6,點(diǎn)C在邊OA上,點(diǎn)D在邊AB上,且OC=3BD,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點(diǎn)C和點(diǎn)D,則k的值為()A. B. C. D.7.如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點(diǎn),則以DE為直徑的圓與BC的位置關(guān)系是()A.相切 B.相交 C.相離 D.無法確定8.若二次函數(shù)y=-x2+bx+c與x軸有兩個交點(diǎn)(m,0),(m-6,0),該函數(shù)圖像向下平移n個單位長度時與x軸有且只有一個交點(diǎn),則n的值是()A.3 B.6 C.9 D.369.如圖,,,則的大小是A. B. C. D.10.下面調(diào)查方式中,合適的是()A.調(diào)查你所在班級同學(xué)的體重,采用抽樣調(diào)查方式B.調(diào)查烏金塘水庫的水質(zhì)情況,采用抽樣調(diào)査的方式C.調(diào)查《CBA聯(lián)賽》欄目在我市的收視率,采用普查的方式D.要了解全市初中學(xué)生的業(yè)余愛好,采用普查的方式二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,小強(qiáng)和小華共同站在路燈下,小強(qiáng)的身高EF=1.8m,小華的身高M(jìn)N=1.5m,他們的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且兩人相距4.7m,則路燈AD的高度是___.12.如圖,在菱形ABCD中,于E,,,則菱形ABCD的面積是______.13.如圖是一個幾何體的三視圖(圖中尺寸單位:),根據(jù)圖中數(shù)據(jù)計(jì)算,這個幾何體的表面積為__________.14.如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3,點(diǎn)P、Q分別在邊BC、AC上,PQ∥AB,把△PCQ繞點(diǎn)P旋轉(zhuǎn)得到△PDE(點(diǎn)C、Q分別與點(diǎn)D、E對應(yīng)),點(diǎn)D落在線段PQ上,若AD平分∠BAC,則CP的長為_________.15.一個正多邊形的一個內(nèi)角是它的一個外角的5倍,則這個多邊形的邊數(shù)是_______________16.如圖,已知P是正方形ABCD對角線BD上一點(diǎn),且BP=BC,則∠ACP度數(shù)是_____度.三、解答題(共8題,共72分)17.(8分)車輛經(jīng)過潤揚(yáng)大橋收費(fèi)站時,4個收費(fèi)通道A.B、C、D中,可隨機(jī)選擇其中的一個通過.一輛車經(jīng)過此收費(fèi)站時,選擇A通道通過的概率是;求兩輛車經(jīng)過此收費(fèi)站時,選擇不同通道通過的概率.18.(8分)如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).(1)觀察猜想圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把△ADE繞點(diǎn)A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.19.(8分)“大美濕地,水韻鹽城”.某校數(shù)學(xué)興趣小組就“最想去的鹽城市旅游景點(diǎn)”隨機(jī)調(diào)查了本校部分學(xué)生,要求每位同學(xué)選擇且只能選擇一個最想去的景點(diǎn),下面是根據(jù)調(diào)查結(jié)果進(jìn)行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計(jì)圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學(xué)生總?cè)藬?shù);(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);(3)若該校共有800名學(xué)生,請估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù).20.(8分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點(diǎn),經(jīng)過A、D兩點(diǎn)的⊙O分別交于AB、AC于點(diǎn)E、F,且BC與⊙O相切于點(diǎn)D.(1)求證:DF=(2)當(dāng)AC=2,CD=1時,求⊙O的面積.21.(8分)全民學(xué)習(xí)、終身學(xué)習(xí)是學(xué)習(xí)型社會的核心內(nèi)容,努力建設(shè)學(xué)習(xí)型家庭也是一個重要組成部分.為了解“學(xué)習(xí)型家庭”情況,對部分家庭五月份的平均每天看書學(xué)習(xí)時間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息,解答下列問題:本次抽樣調(diào)查了個家庭;將圖①中的條形圖補(bǔ)充完整;學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù)是度;若該社區(qū)有家庭有3000個,請你估計(jì)該社區(qū)學(xué)習(xí)時間不少于1小時的約有多少個家庭?22.(10分)如圖,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一點(diǎn),BD=8,DE⊥AB,垂足為E,求線段DE的長.23.(12分)如圖,頂點(diǎn)為C的拋物線y=ax2+bx(a>0)經(jīng)過點(diǎn)A和x軸正半軸上的點(diǎn)B,連接OC、OA、AB,已知OA=OB=2,∠AOB=120°.(1)求這條拋物線的表達(dá)式;(2)過點(diǎn)C作CE⊥OB,垂足為E,點(diǎn)P為y軸上的動點(diǎn),若以O(shè)、C、P為頂點(diǎn)的三角形與△AOE相似,求點(diǎn)P的坐標(biāo);(3)若將(2)的線段OE繞點(diǎn)O逆時針旋轉(zhuǎn)得到OE′,旋轉(zhuǎn)角為α(0°<α<120°),連接E′A、E′B,求E′A+E′B的最小值.24.某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊(duì)想承建這項(xiàng)工程.經(jīng)了解得到以下信息(如表):工程隊(duì)每天修路的長度(米)單獨(dú)完成所需天數(shù)(天)每天所需費(fèi)用(元)甲隊(duì)30n600乙隊(duì)mn﹣141160(1)甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)n=,乙隊(duì)每天修路的長度m=(米);(2)甲隊(duì)先修了x米之后,甲、乙兩隊(duì)一起修路,又用了y天完成這項(xiàng)工程(其中x,y為正整數(shù)).①當(dāng)x=90時,求出乙隊(duì)修路的天數(shù);②求y與x之間的函數(shù)關(guān)系式(不用寫出x的取值范圍);③若總費(fèi)用不超過22800元,求甲隊(duì)至少先修了多少米.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:立體圖形的俯視圖是C.故選C.考點(diǎn):簡單組合體的三視圖.2、D【解析】試題分析:∵分式有意義,∴x+1≠0,∴x≠﹣1,即x的取值應(yīng)滿足:x≠﹣1.故選D.考點(diǎn):分式有意義的條件.3、A【解析】
根據(jù)題意可得等量關(guān)系:原計(jì)劃種植的畝數(shù)改良后種植的畝數(shù)畝,根據(jù)等量關(guān)系列出方程即可.【詳解】設(shè)原計(jì)劃每畝平均產(chǎn)量萬千克,則改良后平均每畝產(chǎn)量為萬千克,根據(jù)題意列方程為:.故選:.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.4、B【解析】【分析】由于一次函數(shù)y=-2x+3中k=-2<0由此可以確定y隨x的變化而變化的情況,即確定函數(shù)的增減性,然后利用解析式即可求出自變量在0≤x≤5范圍內(nèi)函數(shù)值的最大值.【詳解】∵一次函數(shù)y=﹣2x+3中k=﹣2<0,∴y隨x的增大而減小,∴在0≤x≤5范圍內(nèi),x=0時,函數(shù)值最大﹣2×0+3=3,故選B.【點(diǎn)睛】本題考查了一次函數(shù)y=kx+b的圖象的性質(zhì):①k>0,y隨x的增大而增大;②k<0,y隨x的增大而減?。?、B【解析】∵①;②;③;④;∴上述各式中計(jì)算結(jié)果為負(fù)數(shù)的有2個.故選B.6、A【解析】試題分析:過點(diǎn)C作CE⊥x軸于點(diǎn)E,過點(diǎn)D作DF⊥x軸于點(diǎn)F,如圖所示.設(shè)BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點(diǎn)C(a,a).同理,可求出點(diǎn)D的坐標(biāo)為(1﹣a,a).∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點(diǎn)C和點(diǎn)D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.7、B【解析】
首先過點(diǎn)A作AM⊥BC,根據(jù)三角形面積求出AM的長,得出直線BC與DE的距離,進(jìn)而得出直線與圓的位置關(guān)系.【詳解】解:過點(diǎn)A作AM⊥BC于點(diǎn)M,交DE于點(diǎn)N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分別是AC、AB的中點(diǎn),∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE為直徑的圓半徑為1.25,∴r=1.25>1.2,∴以DE為直徑的圓與BC的位置關(guān)系是:相交.故選B.【點(diǎn)睛】本題考查了直線和圓的位置關(guān)系,利用中位線定理得出BC到圓心的距離與半徑的大小關(guān)系是解題的關(guān)鍵.8、C【解析】
設(shè)交點(diǎn)式為y=-(x-m)(x-m+6),在把它配成頂點(diǎn)式得到y(tǒng)=-[x-(m-3)]2+1,則拋物線的頂點(diǎn)坐標(biāo)為(m-3,1),然后利用拋物線的平移可確定n的值.【詳解】設(shè)拋物線解析式為y=-(x-m)(x-m+6),∵y=-[x2-2(m-3)x+(m-3)2-1]=-[x-(m-3)]2+1,∴拋物線的頂點(diǎn)坐標(biāo)為(m-3,1),∴該函數(shù)圖象向下平移1個單位長度時頂點(diǎn)落在x軸上,即拋物線與x軸有且只有一個交點(diǎn),即n=1.故選C.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn):把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸的交點(diǎn)坐標(biāo)問題轉(zhuǎn)化為解關(guān)于x的一元二次方程.也考查了二次函數(shù)的性質(zhì).9、D【解析】
依據(jù),即可得到,再根據(jù),即可得到.【詳解】解:如圖,,,又,,故選:D.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),兩直線平行,同位角相等.10、B【解析】
由普查得到的調(diào)查結(jié)果比較準(zhǔn)確,但所費(fèi)人力、物力和時間較多,而抽樣調(diào)查得到的調(diào)查結(jié)果比較近似.【詳解】A、調(diào)查你所在班級同學(xué)的體重,采用普查,故A不符合題意;B、調(diào)查烏金塘水庫的水質(zhì)情況,無法普查,采用抽樣調(diào)査的方式,故B符合題意;C、調(diào)查《CBA聯(lián)賽》欄目在我市的收視率,調(diào)查范圍廣適合抽樣調(diào)查,故C不符合題意;D、要了解全市初中學(xué)生的業(yè)余愛好,調(diào)查范圍廣適合抽樣調(diào)查,故D不符合題意;故選B.【點(diǎn)睛】本題考查了抽樣調(diào)查和全面調(diào)查的區(qū)別,選擇普查還是抽樣調(diào)查要根據(jù)所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調(diào)查、無法進(jìn)行普查、普查的意義或價值不大,應(yīng)選擇抽樣調(diào)查,對于精確度要求高的調(diào)查,事關(guān)重大的調(diào)查往往選用普查.二、填空題(本大題共6個小題,每小題3分,共18分)11、4m【解析】
設(shè)路燈的高度為x(m),根據(jù)題意可得△BEF∽△BAD,再利用相似三角形的對應(yīng)邊正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因?yàn)閮扇讼嗑?.7m,可得到關(guān)于x的一元一次方程,然后求解方程即可.【詳解】設(shè)路燈的高度為x(m),∵EF∥AD,∴△BEF∽△BAD,∴EFAD即1.8x解得:DF=x﹣1.8,∵M(jìn)N∥AD,∴△CMN∽△CAD,∴MNAD即1.5x解得:DN=x﹣1.5,∵兩人相距4.7m,∴FD+ND=4.7,∴x﹣1.8+x﹣1.5=4.7,解得:x=4m,答:路燈AD的高度是4m.12、【解析】
根據(jù)題意可求AD的長度,即可得CD的長度,根據(jù)菱形ABCD的面積=CD×AE,可求菱形ABCD的面積.【詳解】∵sinD=∴∴AD=11∵四邊形ABCD是菱形∴AD=CD=11∴菱形ABCD的面積=11×8=96cm1.故答案為:96cm1.【點(diǎn)睛】本題考查了菱形的性質(zhì),解直角三角形,熟練運(yùn)用菱形性質(zhì)解決問題是本題的關(guān)鍵.13、【解析】分析:由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀,確定圓錐的母線長和底面半徑,從而確定其表面積.詳解:由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應(yīng)該是圓錐;根據(jù)三視圖知:該圓錐的母線長為6cm,底面半徑為2cm,故表面積=πrl+πr2=π×2×6+π×22=16π(cm2).故答案為:16π.點(diǎn)睛:考查學(xué)生對三視圖掌握程度和靈活運(yùn)用能力,同時也體現(xiàn)了對空間想象能力方面的考查.14、1【解析】
連接AD,根據(jù)PQ∥AB可知∠ADQ=∠DAB,再由點(diǎn)D在∠BAC的平分線上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根據(jù)勾股定理可知,AQ=11-4x,故可得出x的值,進(jìn)而得出結(jié)論.【詳解】連接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵點(diǎn)D在∠BAC的平分線上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,設(shè)PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=,
∴CP=3x=1;故答案為:1.【點(diǎn)睛】本題考查平行線的性質(zhì)、旋轉(zhuǎn)變換、等腰三角形的判定、勾股定理、相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)解決問題,屬于中考??碱}型.15、1【解析】
設(shè)這個正多邊的外角為x°,則內(nèi)角為5x°,根據(jù)內(nèi)角和外角互補(bǔ)可得x+5x=180,解可得x的值,再利用外角和360°÷外角度數(shù)可得邊數(shù).【詳解】設(shè)這個正多邊的外角為x°,由題意得:x+5x=180,解得:x=30,360°÷30°=1.故答案為:1.【點(diǎn)睛】此題主要考查了多邊形的內(nèi)角和外角,關(guān)鍵是計(jì)算出外角的度數(shù),進(jìn)而得到邊數(shù).16、22.5【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°-45°)=67.5°,∴∠ACP度數(shù)是67.5°-45°=22.5°三、解答題(共8題,共72分)17、(1);(2).【解析】試題分析:(1)根據(jù)概率公式即可得到結(jié)論;(2)畫出樹狀圖即可得到結(jié)論.試題解析:(1)選擇A通道通過的概率=,故答案為;(2)設(shè)兩輛車為甲,乙,如圖,兩輛車經(jīng)過此收費(fèi)站時,會有16種可能的結(jié)果,其中選擇不同通道通過的有12種結(jié)果,∴選擇不同通道通過的概率==.18、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解析】
(1)利用三角形的中位線得出PM=CE,PN=BD,進(jìn)而判斷出BD=CE,即可得出結(jié)論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結(jié)論;(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結(jié)論;(3)方法1、先判斷出MN最大時,△PMN的面積最大,進(jìn)而求出AN,AM,即可得出MN最大=AM+AN,最后用面積公式即可得出結(jié)論.方法2、先判斷出BD最大時,△PMN的面積最大,而BD最大是AB+AD=14,即可.【詳解】解:(1)∵點(diǎn)P,N是BC,CD的中點(diǎn),∴PN∥BD,PN=BD,∵點(diǎn)P,M是CD,DE的中點(diǎn),∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案為:PM=PN,PM⊥PN,(2)由旋轉(zhuǎn)知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位線得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)方法1、如圖2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大時,△PMN的面積最大,∴DE∥BC且DE在頂點(diǎn)A上面,∴MN最大=AM+AN,連接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2、由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大時,△PMN面積最大,∴點(diǎn)D在BA的延長線上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=【點(diǎn)睛】本題考查旋轉(zhuǎn)中的三角形,關(guān)鍵在于對三角形的所有知識點(diǎn)熟練掌握.19、(1)40;(2)72;(3)1.【解析】
(1)用最想去A景點(diǎn)的人數(shù)除以它所占的百分比即可得到被調(diào)查的學(xué)生總?cè)藬?shù);(2)先計(jì)算出最想去D景點(diǎn)的人數(shù),再補(bǔ)全條形統(tǒng)計(jì)圖,然后用360°乘以最想去D景點(diǎn)的人數(shù)所占的百分比即可得到扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去A景點(diǎn)的人數(shù)所占的百分比即可.【詳解】(1)被調(diào)查的學(xué)生總?cè)藬?shù)為8÷20%=40(人);(2)最想去D景點(diǎn)的人數(shù)為40﹣8﹣14﹣4﹣6=8(人),補(bǔ)全條形統(tǒng)計(jì)圖為:扇形統(tǒng)計(jì)圖中表示“最想去景點(diǎn)D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=1,所以估計(jì)“最想去景點(diǎn)B“的學(xué)生人數(shù)為1人.20、(1)證明見解析;(2)2516【解析】
(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對內(nèi)錯角相等,再由OA=OD,利用等邊對等角得到一對角相等,等量代換得到AD為角平分線,利用相等的圓周角所對的弧相等即可得證;
(2)連接ED,在直角三角形ACD中,由AC與CD的長,利用勾股定理求出AD的長,由(1)得出的兩個圓周角相等,及一對直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長,進(jìn)而求出圓的半徑,即可求出圓的面積.【詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【點(diǎn)睛】此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相關(guān)性質(zhì)是解本題的關(guān)鍵.21、(1)200;(2)見解析;(3)36;(4)該社區(qū)學(xué)習(xí)時間不少于1小時的家庭約有2100個.【解析】
(1)根據(jù)1.5~2小時的圓心角度數(shù)求出1.5~2小時所占的百分比,再用1.5~2小時的人數(shù)除以所占的百分比,即可得出本次抽樣調(diào)查的總家庭數(shù);(2)用抽查的總?cè)藬?shù)乘以學(xué)習(xí)0.5-1小時的家庭所占的百分比求出學(xué)習(xí)0.5-1小時的家庭數(shù),再用總?cè)藬?shù)減去其它家庭數(shù),求出學(xué)習(xí)2-2.5小時的家庭數(shù),從而補(bǔ)全統(tǒng)計(jì)圖;(3)用360°乘以學(xué)習(xí)時間在2~2.5小時所占的百分比,即可求出學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù);(4)用該社區(qū)所有家庭數(shù)乘以學(xué)習(xí)時間不少于1小時的家庭數(shù)所占的百分比即可得出答案.【詳解】解:(1)本次抽樣調(diào)查的家庭數(shù)是:30÷=200(個);故答案為200;(2)學(xué)習(xí)0.5﹣1小時的家庭數(shù)有:200×=60(個),學(xué)習(xí)2﹣2.5小時的家庭數(shù)有:200﹣60﹣90﹣30=20(個),補(bǔ)圖如下:(3)學(xué)習(xí)時間在2~2.5小時的部分對應(yīng)的扇形圓心角的度數(shù)是:360×=36°;故答案為36;(4)根據(jù)題意得:3000×=2100(個).答:該社區(qū)學(xué)習(xí)時間不少于1小時的家庭約有2100個.【點(diǎn)睛】本題考查條形統(tǒng)計(jì)圖、扇形統(tǒng)計(jì)圖及相關(guān)計(jì)算.在扇形統(tǒng)計(jì)圖中,每部分占總部分的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360°的比.22、1.【解析】試題分析:根據(jù)相似三角形的判定與性質(zhì),可得答案.試題解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴BDAB=DEAC,∴DE=考點(diǎn):相似三角形的判定與性質(zhì).23、(1)y=x2﹣x;(2)點(diǎn)P坐標(biāo)為(0,)或(0,);(3).【解析】
(1)根據(jù)AO=OB=2,∠AOB=120°,求出A點(diǎn)坐標(biāo),以及B點(diǎn)坐標(biāo),進(jìn)而利用待定系數(shù)法求二次函數(shù)解析式;(2)∠EOC=30°,由OA=2OE,OC=,推出當(dāng)OP=OC或OP′=2OC時,△POC與△AOE相似;(3)如圖,取Q(,0).連接AQ,QE′.由△OE′Q∽△OBE′,推出,推出E′Q=BE′,推出AE′+BE′=AE′
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024項(xiàng)目監(jiān)理費(fèi)用調(diào)整補(bǔ)充協(xié)議
- 2024年打磨工個人勞動協(xié)議樣本
- 2024消防員崗位協(xié)議條款集錦
- 房產(chǎn)交易買賣協(xié)議2024年適用
- 2024年高級廚師聘用協(xié)議文本
- 促進(jìn)社會參與與義務(wù)教育多元化治理模式
- 符合2024規(guī)定的煙葉運(yùn)輸協(xié)議樣式
- 建筑合同范本抬頭
- 北京公有住房租賃合同范本
- 2024年股東間股權(quán)轉(zhuǎn)讓協(xié)議模板
- 2023年高中學(xué)業(yè)水平合格考試英語詞匯表完整版(復(fù)習(xí)必背)
- 《英語大字典》word版
- 詢價單模板模板
- GB/T 14074-2017木材工業(yè)用膠粘劑及其樹脂檢驗(yàn)方法
- 鋼棧橋工程安全檢查和驗(yàn)收
- FDS軟件介紹及實(shí)例應(yīng)用
- 無配重懸挑裝置吊籃施工方案
- 強(qiáng)基計(jì)劃解讀系列課件
- 2022-2023學(xué)年山東省濟(jì)南市高一上學(xué)期期中考試英語試題 Word版含答案
- 《24點(diǎn)大挑戰(zhàn)》教學(xué)-完整版課件
- 胸痛的鑒別診斷與危險(xiǎn)分層課件
評論
0/150
提交評論