2024屆湖南省長沙市湖南師大附中教育集團重點中學中考適應性考試數(shù)學試題含解析_第1頁
2024屆湖南省長沙市湖南師大附中教育集團重點中學中考適應性考試數(shù)學試題含解析_第2頁
2024屆湖南省長沙市湖南師大附中教育集團重點中學中考適應性考試數(shù)學試題含解析_第3頁
2024屆湖南省長沙市湖南師大附中教育集團重點中學中考適應性考試數(shù)學試題含解析_第4頁
2024屆湖南省長沙市湖南師大附中教育集團重點中學中考適應性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖南省長沙市湖南師大附中教育集團重點中學中考適應性考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.一元二次方程4x2﹣2x+=0的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.無法判斷2.下列四張正方形硬紙片,剪去陰影部分后,如果沿虛線折疊,可以圍成一個封閉的長方體包裝盒的是()A. B. C. D.3.方程x2﹣3x+2=0的解是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1,x2=﹣2 D.x1=﹣1,x2=24.如圖,在平面直角坐標系中,已知點B、C的坐標分別為點B(﹣3,1)、C(0,﹣1),若將△ABC繞點C沿順時針方向旋轉(zhuǎn)90°后得到△A1B1C,則點B對應點B1的坐標是()A.(3,1) B.(2,2) C.(1,3) D.(3,0)5.如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC6.直線AB、CD相交于點O,射線OM平分∠AOD,點P在射線OM上(點P與點O不重合),如果以點P為圓心的圓與直線AB相離,那么圓P與直線CD的位置關(guān)系是()A.相離 B.相切 C.相交 D.不確定7.如圖,在△ABC中,∠B=90°,AB=3cm,BC=6cm,動點P從點A開始沿AB向點B以1cm/s的速度移動,動點Q從點B開始沿BC向點C以2cm/s的速度移動,若P,Q兩點分別從A,B兩點同時出發(fā),P點到達B點運動停止,則△PBQ的面積S隨出發(fā)時間t的函數(shù)關(guān)系圖象大致是()A. B. C. D.8.如圖,AB∥ED,CD=BF,若△ABC≌△EDF,則還需要補充的條件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E9.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.10.如圖,在4×4的正方形網(wǎng)格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現(xiàn)將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到對應的△COD,則點A經(jīng)過的路徑弧AC的長為()A. B.π C.2π D.3π二、填空題(本大題共6個小題,每小題3分,共18分)11.九(5)班有男生27人,女生23人,班主任發(fā)放準考證時,任意抽取一張準考證,恰好是女生的準考證的概率是________________.12.在平面直角坐標系中,拋物線y=x2+x+2上有一動點P,直線y=﹣x﹣2上有一動線段AB,當P點坐標為_____時,△PAB的面積最?。?3.如圖,小量角器的零度線在大量角器的零度線上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點P在小量角器上對應的度數(shù)為65°,那么在大量角器上對應的度數(shù)為_____度(只需寫出0°~90°的角度).14.如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.15.分式方程的解為x=_____.16.已知關(guān)于x的方程x2三、解答題(共8題,共72分)17.(8分)文藝復興時期,意大利藝術(shù)大師達.芬奇研究過用圓弧圍成的部分圖形的面積問題.已知正方形的邊長是2,就能求出圖中陰影部分的面積.證明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S陰影=S1+S6=S1+S2+S3=.18.(8分)小明有兩雙不同的運動鞋放在一起,上學時間到了,他準備穿鞋上學.他隨手拿出一只,恰好是右腳鞋的概率為;他隨手拿出兩只,請用畫樹狀圖或列表法求恰好為一雙的概率.19.(8分)在以“關(guān)愛學生、安全第一”為主題的安全教育宣傳月活動中,某學校為了了解本校學生的上學方式,在全校范圍內(nèi)隨機抽查部分學生,了解到上學方式主要有:A:結(jié)伴步行、B:自行乘車、C:家人接送、D:其他方式,并將收集的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題:(1)本次抽查的學生人數(shù)是多少人?(2)請補全條形統(tǒng)計圖;請補全扇形統(tǒng)計圖;(3)“自行乘車”對應扇形的圓心角的度數(shù)是度;(4)如果該校學生有2000人,請你估計該?!凹胰私铀汀鄙蠈W的學生約有多少人?20.(8分)如圖,拋物線與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.(1)求拋物線的解析式并寫出其頂點坐標;(2)當點P的縱坐標為2時,求點P的橫坐標;(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.21.(8分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE?。笞C:AB為⊙C的切線.求圖中陰影部分的面積.22.(10分)解方程:1+23.(12分)已知一個口袋中裝有7個只有顏色不同的球,其中3個白球,4個黑球.(1)求從中隨機抽取出一個黑球的概率是多少?(2)若往口袋中再放入x個白球和y個黑球,從口袋中隨機取出一個白球的概率是14,求y與x24.一個口袋中有1個大小相同的小球,球面上分別寫有數(shù)字1、2、1.從袋中隨機地摸出一個小球,記錄下數(shù)字后放回,再隨機地摸出一個小球.(1)請用樹形圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結(jié)果;(2)求兩次摸出的球上的數(shù)字和為偶數(shù)的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

試題解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有兩個相等的實數(shù)根.故選B.考點:根的判別式.2、C【解析】A、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;B、剪去陰影部分后,無法組成長方體,故此選項不合題意;C、剪去陰影部分后,能組成長方體,故此選項正確;D、剪去陰影部分后,組成無蓋的正方體,故此選項不合題意;故選C.3、A【解析】

將方程左邊的多項式利用十字相乘法分解因式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程,求出一次方程的解即可得到原方程的解.【詳解】解:原方程可化為:(x﹣1)(x﹣1)=0,∴x1=1,x1=1.故選:A.【點睛】此題考查了解一元二次方程-因式分解法,利用此方法解方程時首先將方程右邊化為0,左邊的多項式分解因式化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.4、B【解析】

作出點A、B繞點C按順時針方向旋轉(zhuǎn)90°后得到的對應點,再順次連接可得△A1B1C,即可得到點B對應點B1的坐標.【詳解】解:如圖所示,△A1B1C即為旋轉(zhuǎn)后的三角形,點B對應點B1的坐標為(2,2).故選:B.【點睛】此題主要考查了平移變換和旋轉(zhuǎn)變換,正確根據(jù)題意得出對應點位置是解題關(guān)鍵.圖形或點旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來求出旋轉(zhuǎn)后的點的坐標.5、D【解析】

由全等三角形的判定方法ASA證出△ABD≌△ACD,得出A正確;由全等三角形的判定方法AAS證出△ABD≌△ACD,得出B正確;由全等三角形的判定方法SAS證出△ABD≌△ACD,得出C正確.由全等三角形的判定方法得出D不正確;【詳解】A正確;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正確;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正確;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正確,由這些條件不能判定三角形全等;故選:D.【點睛】本題考查了全等三角形的判定方法;三角形全等的判定是中考的熱點,熟練掌握全等三角形的判定方法是解決問題的關(guān)鍵.6、A【解析】

根據(jù)角平分線的性質(zhì)和點與直線的位置關(guān)系解答即可.【詳解】解:如圖所示;∵OM平分∠AOD,以點P為圓心的圓與直線AB相離,∴以點P為圓心的圓與直線CD相離,故選:A.【點睛】此題考查直線與圓的位置關(guān)系,關(guān)鍵是根據(jù)角平分線的性質(zhì)解答.7、C【解析】

根據(jù)題意表示出△PBQ的面積S與t的關(guān)系式,進而得出答案.【詳解】由題意可得:PB=3﹣t,BQ=2t,則△PBQ的面積S=PB?BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面積S隨出發(fā)時間t的函數(shù)關(guān)系圖象大致是二次函數(shù)圖象,開口向下.故選C.【點睛】此題主要考查了動點問題的函數(shù)圖象,正確得出函數(shù)關(guān)系式是解題關(guān)鍵.8、C【解析】

根據(jù)平行線性質(zhì)和全等三角形的判定定理逐個分析.【詳解】由,得∠B=∠D,因為,若≌,則還需要補充的條件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故選C【點睛】本題考核知識點:全等三角形的判定.解題關(guān)鍵點:熟記全等三角形判定定理.9、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質(zhì)得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.10、A【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉(zhuǎn)90°后得到對應的△COD,∴∠AOC=90°,∵OC=3,∴點A經(jīng)過的路徑弧AC的長==,故選:A.【點睛】此題考查弧長計算,關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和弧長公式解答.二、填空題(本大題共6個小題,每小題3分,共18分)11、23【解析】

用女生人數(shù)除以總?cè)藬?shù)即可.【詳解】由題意得,恰好是女生的準考證的概率是2350故答案為:2350【點睛】此題考查了概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=mn12、(-1,2)【解析】

因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,平移直線與拋物線的切點即為P點,然后求得平移后的直線,聯(lián)立方程,解方程即可.【詳解】因為線段AB是定值,故拋物線上的點到直線的距離最短,則面積最小,若直線向上平移與拋物線相切,切點即為P點,設(shè)平移后的直線為y=-x-2+b,∵直線y=-x-2+b與拋物線y=x2+x+2相切,∴x2+x+2=-x-2+b,即x2+2x+4-b=0,則△=4-4(4-b)=0,∴b=3,∴平移后的直線為y=-x+1,解得x=-1,y=2,∴P點坐標為(-1,2),故答案為(-1,2).【點睛】本題主要考查了二次函數(shù)圖象上點的坐標特征,三角形的面積以及解方程等,理解直線向上平移與拋物線相切,切點即為P點是解題的關(guān)鍵.13、1.【解析】

設(shè)大量角器的左端點是A,小量角器的圓心是B,連接AP,BP,則∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所對的圓心角是1°,因而P在大量角器上對應的度數(shù)為1°.故答案為1.14、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設(shè)△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質(zhì),勾股定理,兩點之間線段最短的性質(zhì).得出動點P所在的位置是解題的關(guān)鍵.15、2【解析】根據(jù)分式方程的解法,先去分母化為整式方程為2(x+1)=3x,解得x=2,檢驗可知x=2是原分式方程的解.故答案為2.16、m<9【解析】試題分析:若一元二次方程有兩個不相等的實數(shù)根,則根的判別式△=b2﹣4ac>0,建立關(guān)于m的不等式,解不等式即可求出m的取值范圍.∵關(guān)于x的方程x2﹣6x+m=0有兩個不相等的實數(shù)根,∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0,解得:m<1.考點:根的判別式.三、解答題(共8題,共72分)17、S1,S3,S4,S5,1【解析】

利用圖形的拼割,正方形的性質(zhì),尋找等面積的圖形,即可解決問題.【詳解】由題意:S矩形ABCD=S1+S1+S3=1,S4=S1,S5=S3,S6=S4+S5,S陰影面積=S1+S6=S1+S1+S3=1.故答案為S1,S3,S4,S5,1.【點睛】考查正方形的性質(zhì)、矩形的性質(zhì)、扇形的面積等知識,解題的關(guān)鍵是靈活運用所學知識解決問題.18、(1)12;(2)1【解析】

(1)根據(jù)四只鞋子中右腳鞋有2只,即可得到隨手拿出一只恰好是右腳鞋的概率;(2)依據(jù)樹狀圖即可得到共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,進而得出恰好為一雙的概率.【詳解】解:(1)∵四只鞋子中右腳鞋有2只,∴隨手拿出一只,恰好是右腳鞋的概率為24=1故答案為:12(2)畫樹狀圖如下:共有12種等可能的結(jié)果,其中兩只恰好為一雙的情況有4種,∴拿出兩只,恰好為一雙的概率為412=1【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.19、(1)本次抽查的學生人數(shù)是120人;(2)見解析;(3)126;(4)該?!凹胰私铀汀鄙蠈W的學生約有500人.【解析】

(1)本次抽查的學生人數(shù):18÷15%=120(人);(2)A:結(jié)伴步行人數(shù)120﹣42﹣30﹣18=30(人),據(jù)此補全條形統(tǒng)計圖;(3)“自行乘車”對應扇形的圓心角的度數(shù)360°×=126°;(4)估計該?!凹胰私铀汀鄙蠈W的學生約有:2000×25%=500(人).【詳解】解:(1)本次抽查的學生人數(shù):18÷15%=120(人),答:本次抽查的學生人數(shù)是120人;(2)A:結(jié)伴步行人數(shù)120﹣42﹣30﹣18=30(人),補全條形統(tǒng)計圖如下:“結(jié)伴步行”所占的百分比為×100%=25%;“自行乘車”所占的百分比為×100%=35%,

“自行乘車”在扇形統(tǒng)計圖中占的度數(shù)為360°×35%=126°,補全扇形統(tǒng)計圖,如圖所示;(3)“自行乘車”對應扇形的圓心角的度數(shù)360°×=126°,故答案為126;(4)估計該?!凹胰私铀汀鄙蠈W的學生約有:2000×25%=500(人),答:該?!凹胰私铀汀鄙蠈W的學生約有500人.【點睛】本題主要考查條形統(tǒng)計圖及扇形統(tǒng)計圖及相關(guān)計算,用樣本估計總體.解題的關(guān)鍵是讀懂統(tǒng)計圖,從條形統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.20、(1)二次函數(shù)的解析式為,頂點坐標為(–1,4);(2)點P橫坐標為––1;(3)當時,四邊形PABC的面積有最大值,點P().【解析】試題分析:(1)已知拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點式,直接寫出頂點坐標即可;(2)把y=2代入解析式,解方程求得x的值,即可得點P的橫坐標,從而求得點P的坐標;(3)設(shè)點P(,),則,根據(jù)得出四邊形PABC與x之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點P的坐標.試題解析:(1)∵拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點坐標為(﹣1,4)(2)設(shè)點P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點P(﹣﹣1,2).(3)設(shè)點P(,),則,,∴=∴當時,四邊形PABC的面積有最大值.所以點P().點睛:本題是二次函數(shù)綜合題,主要考查學生對二次函數(shù)解決動點問題綜合運用能力,動點問題為中考??碱}型,注意培養(yǎng)數(shù)形結(jié)合思想,培養(yǎng)綜合分析歸納能力,解決這類問題要會建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)解決問題.21、(1)證明見解析;(2)1-π.【解析】

(1)解直角三角形求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論