![導(dǎo)數(shù)大題證明不等式歸類(解析版)_第1頁(yè)](http://file4.renrendoc.com/view12/M07/0C/3B/wKhkGWYDaYOAeaJjAAEK2La7nYA356.jpg)
![導(dǎo)數(shù)大題證明不等式歸類(解析版)_第2頁(yè)](http://file4.renrendoc.com/view12/M07/0C/3B/wKhkGWYDaYOAeaJjAAEK2La7nYA3562.jpg)
![導(dǎo)數(shù)大題證明不等式歸類(解析版)_第3頁(yè)](http://file4.renrendoc.com/view12/M07/0C/3B/wKhkGWYDaYOAeaJjAAEK2La7nYA3563.jpg)
![導(dǎo)數(shù)大題證明不等式歸類(解析版)_第4頁(yè)](http://file4.renrendoc.com/view12/M07/0C/3B/wKhkGWYDaYOAeaJjAAEK2La7nYA3564.jpg)
![導(dǎo)數(shù)大題證明不等式歸類(解析版)_第5頁(yè)](http://file4.renrendoc.com/view12/M07/0C/3B/wKhkGWYDaYOAeaJjAAEK2La7nYA3565.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
11(1)直接構(gòu)造函數(shù)法:證明不等式fx>gx(或fx<gx)轉(zhuǎn)化為證明fx-gx>0(或fx-gx<0),進(jìn)而構(gòu)造輔助函數(shù)hx=fx-gx;(2)構(gòu)造新的函數(shù)hx;(3)利用導(dǎo)數(shù)研究hx的單調(diào)性或最值;題. 1(陜西省澄城縣20121-2022學(xué)年高三試數(shù)學(xué)(理)試題)設(shè)函數(shù)f(x)=lnx-x+1.(1)討論f(x)的單調(diào)性;(1)f(x)的增區(qū)間為(0,1(,減區(qū)間為(1,+∞(.(2)證明見(jiàn)解析(1)f(x)=lnx-x+1的定義域?yàn)?0,+∞),fI(x(=-1,由fI(x(>0,可得0<x<1;fI(x(<0,可得x即有f(x)的增區(qū)間為(0,1(,減區(qū)間為(1,+∞(.(2)當(dāng)x∈(1,+∞(時(shí),由(1)可得f(x)=lnx-x+1在(1,+∞(遞減,可得f(x(<f(1(=0,即有0<lnx<x-1.故有:1< 2已知函數(shù)f(x)=x2-2lnx.(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;(1)依題意知函數(shù)的定義域?yàn)椤磝|x>0},∵f′(x)由f′(x)>0,得x>1;由f′(x)<0,得0<x<1(2)設(shè)g(x)=f(x)-3x+1=x2-2lnx-3x+4,∴g′(x)=2x-2--3== (2x+1)(x-2)x,∴g(x)>g(2)=4-2ln2-6+4>0,∴當(dāng)x>2時(shí),x2-2lnx>3x-4,即當(dāng)x>2時(shí)f(x)>3x-4..11f(x(在點(diǎn)(0,f(0((處的切線方程為y=a-b.(1)a=-1,b=-1;(2)證明見(jiàn)解析.∵f(x(=ex+ax+b,∴fI(x(=ex+a,∵曲線y=f(x(在點(diǎn)(0,f(0((處的切線方程為y=a-b,22由(1)知f(x(=ex-x-1,f,(x(=ex-1,,f(x(為減函數(shù),當(dāng)x>0時(shí),f,(x(>0,f(x(為增函數(shù), -3lnx.若a=1,則f(x)=x3-3lnx,x>0,f,(x)=3x2-=,ff(x)單調(diào)遞減,ff(x)=ax3-3lnx,x>0,f,(x)=3ax2-=(x>0),所以f(x)在+∞上單調(diào)遞增.當(dāng)a>0時(shí),f(x)在+∞上單調(diào)遞增. (1)求曲線y=f(x)在點(diǎn),f處的切線方程;xx>1.,f=-1,故曲線y=f(x)在點(diǎn),f處的切線方程為y--1(=x-.即x-y-1=0.(x)=(2x-2sinx+cosx)ex+(2-2cosx-sinx)ex=2(x-sinx)+2-2sin(x+ex.3344xx>1. (1)求f(x(的最小值;由f(x)=(x2-1(-lnx?f'(x(=x-=,當(dāng)x>1時(shí),f'(x(>0,所以函數(shù)f(x(單調(diào)遞增,當(dāng)0<x<1時(shí),f'(x(<0,所以函數(shù)f(x(單調(diào)遞減,因此f(x(min=f(1(=0;f(x(min=0,即f(x)=(x2-1(-lnx>0(x>0(?-lnx>-(x2-1((x>0(,即ln>-(x2-1((x>0(,當(dāng)x=時(shí),ln>-2-1?ln>. x+bx+1在x=0處有極值2.(Ⅱ)證明:f(x)>ex-x.而證得不等式成立.x-x+1.要證f(x)>ex-x,只需證ex-x+1>ex-x.即ex-ex+1>0.x1g(x)-0+g(x)1×1+1=1>0.故f(x)>ex-x成立1然對(duì)數(shù)的底數(shù),曲線y=fx在2,f2處切線的傾斜角的正切值為e2+2e.1(2)依題意即證fx=x2-2xex+2ex-e2lnx>0,即x-2ex-1+>,構(gòu)造函數(shù)gx=x-2ex-22【詳解】解:(1)因?yàn)閒x=x2-2xex+aex-e2lnx,所以fx=x2-2ex+ae-,f2=+ae=+2e,解得a=2.(2)由(1)可得fx=x2-2xex+2ex-e2lnx即證fx=x2-2xex+2ex-e2lnx>0?x-2ex-1+>.令gx=x-2ex-2+,gx=x-1ex-2,于是gx在0,1上是減函數(shù),在1,+∞上是增函數(shù),所以gx≥g1=(x=1取等號(hào)).又令hx=,則hx=he=(x=e時(shí)取等號(hào)).1-lnxx2,于是hx在0,e上是增函數(shù),在e,+∞上是減函數(shù),所以hx≤1-lnxx2所以gx>hx,即fx>0.22(1)討論y=f(x)的單調(diào)性并求極值;2(x+1)>lnx?ln(x+2).2x+1>lnx?lnx+2即證當(dāng)x>1時(shí),ln1>,構(gòu)造新函數(shù) e e e,令fx<0,解得0<x e5566當(dāng)x=時(shí)函數(shù)取得極小值為f=-,無(wú)極大值.由(1)可知f(x(=xlnx在(1,+∞(遞增,所以xlnx-(x+l(ln(x+1(<0,所以h'(x(<0,因此y=h(x(在(1,+∞(遞減,當(dāng)x+1>x>1時(shí),h(x+1(<h(x(即ln(1(>,所以ln2(x+1(>lnx?ln(x+2(得證.33當(dāng)x<0時(shí),g'(x(<0,g(x(在(-∞,0(上當(dāng)x>0時(shí),g'(x(>0,g(x(在(0,+∞(上x(chóng)(x-1(+a,故f(x(在(0,x0(上單調(diào)遞減,在(x0,+∞(上單調(diào)遞增,∴f(x(≥f(x0(x(x0-1(+a=0知f(x0(=ex>1即當(dāng)0<a<1,x>0時(shí),f(x(>1恒成立.77 (2)討論fx的單調(diào)性,并證明:當(dāng)n∈N*時(shí),2n+1lnn(1)證明見(jiàn)解析(2)答案見(jiàn)解析(1)構(gòu)造函數(shù)ht=ln1+t-t(t>0),利用導(dǎo)數(shù)證明ln1+t<t,可得ln(1+<(1)證明:令ht=ln1+t-t(t>0),則ht=-1=-<0,所以ht在0,+∞上單調(diào)遞減,所以ht<h0=0,即ln1+t<t.x<1,1+x<e1x 令φt=ln1+t-(t>0),則φt=-=>0,所以gx在0,+∞上單調(diào)遞增,所以fx=(1+x在0,+∞上單調(diào)遞增,n<n+1,n<ln即n[lnn+1-lnn[<n+1[lnn+2-lnn+1[,整理得:2n+1lnn+1<nlnn+n+1lnn+2. 2(2012·河北衡水·統(tǒng)考一模)設(shè)函數(shù)f(x)=x2+bln(x+a),其中b≠0.(1)先由b=1得到f'x,再由fx在x=-2處取極值得到f-2=0,進(jìn)而可得出結(jié)果;(2)先由a=1得f'(x(=,根據(jù)f(x(在(-1,+∞(上單調(diào)遞增,可得2x2+2x+b≥0在 n n=2x+,依題意有f,(-2( =0,故 9 ;4,此時(shí)f'(x(=2x+ x+(2)當(dāng)a=1時(shí),f'(x(=2x+=,若f(x(在(-1,+∞(上單調(diào)遞增,則2x2+2x+b≥0在(-1,+∞(上恒成立,設(shè)h(x(=2x2+2x+b,只需h-=-+b≥0,即b≥;=x3-x2+ln(x+1(>0恒成,(x(=3x2-2x+=在(0,1[上恒正,即當(dāng)x∈(0,1[時(shí),有x3-x2+ln(x+1(>0,ln(x+1(>x2-x3 和b是實(shí)數(shù),曲線y=f(x(恒與x軸相切于坐標(biāo)原點(diǎn).(3(求證10000.4<e<1000.5.(x)=-aln(1+x)+-b,根據(jù)條件知f,(0)=0,所以1-b(2)由(1)得f(x)=(1-ax)ln(1+x)-x,0≤x≤1f,(x)=-aln(1+x)+-1f"(x)=-+=-.≥f,(0)=0,因此f(x)在[0,1]上單調(diào)遞②當(dāng)a≥0時(shí),由于0≤x≤1,有f"(x)=-<0,于是f,(x)在[0,1]上單調(diào)遞減,從而f,(88(x)=-≤0,于是f/(x)]上單調(diào)遞減,即f(x)≤f(0)=0而且f(0)=0;綜上a≤-1000+n+<e<(1+n+.并且繼續(xù)作如下(1+n+?n+ln1(1+n+?n+ln1+<1<n+ln1+?-<0(p)->0(q)而且僅有f(0)=0.當(dāng)n=1時(shí)1+ln2-1=ln2-1< n< nn+<e<(1+n+.10000.4<e<1000.5成立.2(2023上·河南南陽(yáng)·高三統(tǒng)考期中)(1)已知函數(shù)f(x(=xlnx,判斷函數(shù)g(x(=f(1+x(+f(1-x(的2-1(1->n2.不等式變形為(n+1(ln(n+1(-nlnn>nlnn-(n-1(ln(n-1(,構(gòu)造函數(shù)h(x(=(x+1(ln(x+1(-99函數(shù)g(x(=(1+x(ln(1+x(+(1-x(ln(1-x(在(-1,0(上單調(diào)遞減,在(0,1(上單調(diào)遞增證明:g(-x(=(1-x(ln(1-x(+(1+x(ln(1+x(,∴g(-x(=g(x(則g(x(為(-1,1(上的偶函數(shù).>0,>0,1+11-1(n-1(n>n2對(duì)n∈N*,1+11-1即證(n+1(ln(n+1(+(n-1(ln(n-1(>2nlnn,即證(n+1(ln(n+1(-nlnn>nlnn-(n-1(ln(n-1(,設(shè)函數(shù)h(x(=(x+1(ln(x+1(-xlnx(x>0),h,(x(=ln(x+1(-lnx>0,故函數(shù)h(x(在(0,+∞(上單調(diào)遞增又n>n-1>0,∴h(n(>h(n-1(,即(n+1(ln(n+1(-nlnn>nlnn-(n-1(ln(n-1(成立,故原不等式成立. f>f(1)=0,運(yùn)算整理證出結(jié)論.(x)=,f'f'所以f(x)在區(qū)間,2上有唯一極小值點(diǎn),故f(x)min=f(1)=0,又∵f=1-ln2,f(2)=-+ln2,f-f(2)=-2ln2=3>16,所以f-f(2)>0,即f>f(2)所以f(x)在區(qū)間,2上的最大值是f=1-ln2當(dāng)n>1時(shí),=1+>1,則f>f(1)=0即f=+ln=-+ln>0,即ln>證明不等式f(1(+f(2(+?+f(n(<g(n(,該不等式左邊是求和式,右邊只有單獨(dú)的一項(xiàng),但可以通過(guò)變形將g(n(=[g(n(-g(n-1([+[g(n-1(-g(n-2([+[g(n-2(-g(n-3([+?+[g(2(-g(1([+[g(1(-g(0([n=g(n(-g(n-1((n∈N*(,則只需證f(1(+f(2(+?+f(n(<b1+b2+?+bn (1)求函數(shù)f(x(的極值;(2)求證:++?+>ln2(n∈N*(.(x),運(yùn)用導(dǎo)數(shù)分類討論m≤0與m>0時(shí)f(x)單調(diào)性進(jìn)而分析f(x)的極值.(2)運(yùn)用ln(1+x)<x(x>0)對(duì)++?+進(jìn)行放縮及對(duì)數(shù)運(yùn)算公式即可證明.f'(x(=-m(x>-1).②當(dāng)m>0時(shí),由f'(x)>0,得-1<x<-1;由f'(x)<0,得x>-1.故當(dāng)x=-1時(shí),f(x)有極大值f-1(=m-1-l②當(dāng)m>0時(shí),f(x)有極大值m-1-lnm,無(wú)極小值.即ln(1+x)<x,x>0.可得n1+n2+?+n++1>ln+ln+?+ln=ln12=ln2.即++?+>ln2(n∈N*(成立. (1)討論函數(shù)f(x(的單調(diào)性;(2)證明:2ln(n+1(>+++?+(n∈N*).且f'(x(=-2x=若a>0,令f'(x)=0,因?yàn)閤>0,可得f'(x(>0,f(x(單調(diào)遞增;f'(x(<0,f(x(單調(diào)遞減,所以f(x(max=f(1(=0,所以f(x)≤0,即2lnx≤x2-1,*2+?+2-n<++?+-n=1+1-+?+1--n=-++?+,即2lnn+1>+++?+n+1.+(1)討論fx的單調(diào)性;*,證明:+++?++lnn+1>n.【分析】(1)討論a=0,a>0,a<0,由f,x的正負(fù)確定fx單調(diào)性;1-a(2)記gx=axlnx-x+1,(x>1),由ge>0得a>0,討論ea與1大小關(guān)系,驗(yàn)證gxmin>0是否成1-ax=alnx+a-1,(x>0)當(dāng)a=0時(shí),fx在0,+∞上單調(diào)遞減;(2)記gx=axlnx-x+1,(x>1),由題知x>1時(shí)gx>0恒成立,由ge=ae-e+1>0得a>>0,1-a1-amin=ge=1-,由于e=e-1>1+-1(=,1-a1-a綜上得a≥1.*所以ln1+>,即ln>1-所以[lnn+1-lnn[>1-,故[lnn+1-ln1[>n-(+++?+,即+++?++lnn+1>n.2(1)若不等式fx≥gx在區(qū)間0,+∞內(nèi)恒成立,求實(shí)數(shù)k的取值范圍;2(2)求證:++...+<(n≥2,n∈N?,e為自然對(duì)數(shù)的底數(shù))令hx=,又hx=,令hx=0解得x=e,所以當(dāng)x=e時(shí)函數(shù)hx有最大值,且最大值為,所以k≥.++...+<++...+,又1+1+?+1<1+1+?+12n2=(1-+-+...+-=1-<1,所以++...+即++...+<++...+<,33(2)已知a=1,m≥,x>1,gx=lnx+mf(3)證明:ln5<++?+n∈N*.【詳解】(1)fx=-e-x-aex≤0對(duì)?x∈R恒成立,即a≥-e-2x對(duì)?x∈R恒成立.因?yàn)?e-2x<0,則a≥0.(2)gx=lnx+m-x(≤lnx+-x只需證明lnx+-x(<0.=令hx=lnx+(-x(x>1,hx=-22-=-x2-1=則hx在1,+∞單調(diào)遞減,則h(x)<h(1),-x-122x2<0,(3)由(2)知lnx<x-(x>1(,令x=,則有l(wèi)n<-,即ln(n+1(-lnn<1+-=+,ln(n+1(-lnn<+,ln(n+2(-ln(n+1(<+,?,ln(5n(-ln(5n-1(<+,累加可得,ln(5n)-lnn<++?++<++?++故ln5<++?++(n∈N*(,從而命題得證.n=(n∈N*(, 3*)=0時(shí),f(x(=-3不是單調(diào)函數(shù);(2)-<m<-9;(3)證明見(jiàn)解析.(x)>0得增區(qū)間,解f'(x)<0得減區(qū)間;(x)=(x>0),f'(2)=-=1得a=-2,f(x)=-2lnx+2x-3,g(x)=x3++2(x2(x)=3x2+(m+4)x-222(t)<0恒成立,∴-<m<-9.∵n≥2,n∈N*,則有0<lnn<n-1,∴0<<n-1n.f'(x(=-1=,①當(dāng)a≤0時(shí),f'(x(<0,f(x(在(0,+∞(上單調(diào)遞減,f(x(>f(1(=0,不合題意;,則f(x(在(a,+∞(上單調(diào)遞減,f(x(在(0,1(上單調(diào)遞增,f(x(在(1,+∞(上單調(diào)遞減,f(x(≤f(1(=0,符合題意;,則f(x(在(0,a(上單調(diào)遞增,,則f(x(在(a,+∞(上單調(diào)遞減,令x=n,其中n∈N+且n≥2,則有l(wèi)nn<n-1,又n-1<n(n-1(,所以,lnn<n(n-1(,即<11【詳解】(1)hx=fx-gx=x+1lnx-ax+2因?yàn)閒x≥gx對(duì)任意的x∈[1,+∞恒成立,設(shè)hx=fx-gx=x+1lnx-ax+2,所以a≤在x∈[1,+∞恒成立,設(shè)mx= x+1lnx+2x,mx=,令μx=x-1-lnxμx=≥0在x∈[1,+∞恒成立,所以μx=x-1-lnx在[1,+∞上為增函數(shù),所以μx≥0即mx≥0在x∈[1,+∞恒成立,所以函數(shù)mx在[1,+∞)為增函數(shù);∴當(dāng)x≥1時(shí),lnx≥,且當(dāng)且僅當(dāng)x=1時(shí)ln令x≥nn∈N+,n≥2,則lnn>即ln2>,ln3>,ln4>...lnn-2>,lnn-1>,lnn>2n-1n+1, *,x>-1且x≠0,函數(shù)fx=1+xp-px-1.p>1+px,令p=2,x=n∈N*放縮1+>【詳解】(1)由f(x)=p1+xp-1-p=p[1+xp-1-1[,∵1+x>0,p-1>0,∴y=1+xp-1-1單調(diào)遞增.當(dāng)-1<x<0時(shí),fx<0,fx單調(diào)遞減;當(dāng)x>0時(shí),fx>0,fx單調(diào)遞增.∴fx>f0=0.p>1+px,令p=2,x=n∈N*,2>1+2n2-1=> >2n-1 2n-1,=ln1+1+=ln1+1+?1+ 2n+11+ 2n+11+1+(>=2n+12n-1...3.3. <e?1+ (n+1(2 <e?1+ (n+1(2L 1+||.(n+1(2L【分析】(1)f(x(<g(x(等價(jià)于xlnx-<0,即xlnx-<0,記h(x(=lnx-a(x-1(2,只要證明h(x(max<0即可,分a≤0,0<a<2和a≥2三種情況討論函數(shù)h(x(的最值,從而可<g(x(在(1,+∞(上成立,即lnx<x-1,令x=1+,k=1,2,?,【詳解】(1)解:f(x(<g(x(等價(jià)于xlnx-<0,即xlnx-<0,記h(x(=lnx-,則hI(x(=-=,當(dāng)a≤0時(shí),hI(x(>0,h(x(在(1,+∞(上單調(diào)遞由h(1(=0,h(x(>h(1(=0,所以xh(x(>0,即f(x(<g(x(不恒成立;>0,所以h(x(在(1,+∞(上單調(diào)遞增,則h(x(>h(1(=0,所以f(x(<g(x(不恒成立;<0,h(x(在(1,+∞(上單調(diào)遞減,所以h(x(<h(1(=0,所以xh(x(<0,即f(x(<g(x(恒成立,所以f(x(<g(x(在(1,+∞(上恒成立,實(shí)數(shù)a的取值范圍是[2,+∞(;<g(x(在(1,+∞(上成立,即lnx<x-1,令x=1+,k=1,2,?,n,則ln1+<,nΓ|(n+1(2L|<++?+==<?1+<e.ln(f(1(?f(2(???f(n((<lnt?ln(f(1((+ln(f(2((+ln(f(3((?+ln(f(2((<lnt <f(x(<x;*1+1+?1+<e.【分析】(1)構(gòu)造函數(shù)g(x(=f(x(-=ln(x+1(-(x>0(和h(x(=f(x(-x=ln(1+x(-1+<ln【詳解】(1)令g(x(=f(x(-=ln(x+1(-(x>0(,則g,(x)=-=>即f(x(>成立.令h(x(=f(x(-x=ln(1+x(-x(x>0(,則h,(x(=-1=-<0(x>0(,即f(x(<x成立.綜上所述,當(dāng)x∈(0,+∞(時(shí),<f(x(<x成立.**).1+2<2,+ln(+?+ln1+<2+2+?+=n(1)=n+1≤11+1+???1+1+?1+<e. xx+1 xx+1**).則ln1++ln1++?+ln(1+>++?+>++?+==,1+1+???1+1+?1+>e.*1+1+?1+<e. 2(2023·全國(guó)·高三專題練習(xí))已知函3(2)將問(wèn)題轉(zhuǎn)化為sinx-xcosx-ax3≤0,令g(x)=sinx-xcosx-ax3,用導(dǎo)數(shù)法求其最大值即可. 1+<證明.∴切線方程為y=x-+1.(2)f(x)≤ax3?sinx-xcosx-ax3≤0,令g(x)=sinx-xcosx-ax3,則g,(x)=xsinx-3ax2=x(sinx-3ax).令h(x)=sinx-3ax,則h,(x)=cosx-3a.③當(dāng)-1<3a<1,即-<a<時(shí),由h,(0)=1-3a>0,h,(π)=-1-3a<0,0x0(=0(x)>0,1+<.∴l(xiāng)n1+g+ln1+g+???+ln1+g<++???+==1-< .211(1)求曲線y=f(x(在點(diǎn)(1,f(1((處的切線方程;≥0;*?<m成立,求m的最小值.?所以曲線y=f(x(在點(diǎn)(1,f(1((處的切線方程為y=(a-1((x-1(,即(a-1(x-y-a+1=0.x1f,(x(-0+f(x(可知當(dāng)x=1時(shí),f(x(取最小值f(1(=0,所以f(x(≥0.令x=21+1<21,1++ln1+(+?+ln<++?+21=(11--(=1-n <1 <1?<1,?<e.≥=>2,<m成立時(shí),整數(shù)m的最小值為3.2(2023·全國(guó)·高三專題練習(xí))已知關(guān)于x的函數(shù)fx=ax-lnx-1+ln2.2(1)討論fx的單調(diào)性;*<n2-nln2.≤0和a>0兩類分別討論函數(shù)的單調(diào)性;(2)由(1)知fx≥f=0,即lnx≤2x-1-ln2(x【詳解】(1)由fx=ax-lnx-1+ln2得fx=a-(x>0)知當(dāng)a≤0時(shí)fx<0?fx在0,+∞上單調(diào)遞減當(dāng)a>0時(shí),fx==ax時(shí)fx>0,fx在,+∞(上單調(diào)遞增,當(dāng)0<x<時(shí)fx<0,fx在(0,上單調(diào)遞減.fx≥f=0,即有l(wèi)nx≤2x-1-ln2(x>0),∴l(xiāng)n1<2-1-ln2=1-ln2,ln2<4-1-ln2=3-ln2ln3<6-1-ln2=5-ln2?lnn<2n-1-ln2以上各式相加得:ln1+ln2+ln3+??+lnn<1+3+5+?+2n-1-nln2,ln1×2×3×?×n<n2-nln2.3(2023·四川成都·石室中學(xué)??寄M預(yù)測(cè))已知函數(shù)fx=ex-ax2-x3【分析】(1)根據(jù)題意,由fx單調(diào)遞增,轉(zhuǎn)化為fx=ex-ax-1≥0恒成立,然后分a>0時(shí),lnx+1<x,然后再由<--1n【詳解】(1)由f(x)=ex-ax2-x可得,f(x)=ex-ax-1,由于函數(shù)f(x)單調(diào)遞增,則f(x)=ex-ax-1≥0恒成立,設(shè)h(x)=ex-ax-1,則hx=ex-a,又因?yàn)閔=e-a?-1=e-2<0,即f(x)<0,不滿足題意;當(dāng)a>0時(shí),令h(x)=ex-a=0,解得x=lna, =nn-1n-1所以當(dāng)x=lna時(shí),函數(shù)h(x)取得最小值h(lna)=elna-alna-1=a-alna-1,由h(lna)≥0可得,a-1-alna≥0,令μ(a)=a-1-alna,則μImax=μ(1)=0,由于a-1-alna≥0恒成立,x-x-1≥0,即有ex≥x+1,則x>0時(shí),ln(x+1(<x,故當(dāng)n∈N*且n≥2時(shí),1+<1++???+,因?yàn)閚≥2時(shí),<=-,所以1++???+<1+(1-+-+???+-=1+1-<2,1+<e2. 1已知函數(shù)f(x)=x2-(a-2)x-alnx(a∈R).(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;x>x2+x+2.fI(x)=2x-(a-2)-=,即fI(x)=,(ii)若a>0,令fI(x)>0,即2x-a>0,解得x>,令fI(x)<0,即2x-a<0,解得0<x<, 2+x-lnx,要證明f(x)+ex>x2+x+2,只用證明ex-lnx-2>0,令g(x)=ex-lnx-2,g(x)=ex-,x=,xx0gx-0+g(x)所以g(x)min=g(x0)=ex-lnx0-2=+x0-2,因?yàn)?x0-2≥2?x0-2=0,因?yàn)閤0≠1,所以不 (1)求函數(shù)y=f(x)的單調(diào)區(qū)間;x>x2+x+2.f(x)=2x-(a-2)-=,即f(x)=,2+x-lnx,要證明f(x)+ex>x2+x+2,只用證明ex-lnx-2>0,xx0gx-0+g(x)所以g(x)min=g(x0)=ex-lnx0-2=+x0-2,因?yàn)?x0-2≥2?x0-2=0,因?yàn)閤0≠1,所以不1(2023上·福建福州·高三校聯(lián)考)設(shè)函數(shù)f(x)=e2x-alnx.1(1)a=e時(shí),f(x)=e2x-elnx的定義域?yàn)?0,+∞), 2∴當(dāng)0 2 2 2(2)證明:f(x)=e2x-alnx的定義域?yàn)?0,+∞),且f(x)=2e2x-.2x0,+∞時(shí),f′(x)>0,故f(x)在0,x0單調(diào)遞減,在x0,+∞單調(diào)遞增,當(dāng)x=x0時(shí)f(x)取得最小值fx0,2x-=02x=,兩邊取對(duì)數(shù)得lnx0=ln-2x0,2(2024上·陜西安康·高三校聯(lián)考階段練習(xí))已知函數(shù)fx=x-alnx-4,a∈R.(1)討論函數(shù)fx的單調(diào)性;(2)當(dāng)a=1時(shí),令Fx=x-2ex-fx,若x=x0為Fx的極大值點(diǎn),證明:0<Fx0<1.(1)答案見(jiàn)解析;(2)證明見(jiàn)解析.(1)函數(shù)fx的定義域?yàn)?,+∞,fx=1-=,①當(dāng)a≤0時(shí),fx>0,函數(shù)fx在0,+∞上單調(diào)遞增;所以,函數(shù)fx在a,+∞上單調(diào)遞增,在0,a上單調(diào)遞減.綜上,當(dāng)a≤0時(shí),函數(shù)fx在0,+∞上單調(diào)遞增;當(dāng)a>0時(shí),函數(shù)fx在a,+∞上單調(diào)遞增,在0,a上單調(diào)遞減.(2)當(dāng)a=1時(shí),F(xiàn)x=x-2ex-x+lnx+4,Fx=x-1ex-1+=x-1(ex-,設(shè)gx=ex-,則gx=ex+,當(dāng)x>所以Fx在0,x1上單調(diào)遞增,在x1,1上單調(diào)遞減,在1,+∞上單調(diào)遞增,x-=0x=Fx0=x0-2ex-x0+lnx0+4=-x0-x0+4=5-2(x0+,,lnx0=-x0,0<1.3(2023上·重慶沙坪壩·高三重慶一中校考階段練習(xí))已知函數(shù)fx=ax+xlnx,a∈R.(1)判斷fx的單調(diào)性;3(2)若a=1,0<x≤1,求證:ex+1-fx≤e,其中e是自然對(duì)數(shù)的底數(shù).(1)f(x)在(0,e-a-1)上單調(diào)遞減,在(e-a-1,+∞)上單調(diào)遞增.(2)證明見(jiàn)詳解(2)構(gòu)造函數(shù)gx=ex-x-xlnx+1,利(1)函數(shù)f(x)的定義域?yàn)?0,+∞),fx=1+a+lnx,當(dāng)0<x<e-a-1時(shí),fx<0,當(dāng)x>e-a-1,fx>0;故f(x)在(0,e-a-1)上單調(diào)遞減,在(e-a-1,+∞)上單調(diào)遞增.(2)證明:令g(x)=ex+1-f(x)=ex-x-xlnx+1,則g(x)=ex-lnx-2,令h(x)=g(x),則h(x)=ex-,顯然h(x)在(0,+∞)上單調(diào)遞增.∴g(x)≥g(x0),x=,兩邊取對(duì)數(shù)得x0=-lnx0,故g(x0)=ex-lnx0-2=+x0-2≥0,∴g(x)≥g(x0)≥0,凸凹反轉(zhuǎn)首先是證明不等式的一種技巧,欲證明f(x)>0,若可將不等式左端f(x)拆成g(x)>h(x),且gmin來(lái)完成證明. 1(2023上·黑龍江哈爾濱·高三哈爾濱市第十三中學(xué)校???已知函數(shù)fx=+lnx,m∈(1)討論fx的單調(diào)性;(1)答案見(jiàn)解析(2)證明見(jiàn)解析(1)求出函數(shù)fx的導(dǎo)函數(shù)fx,對(duì)m進(jìn)行分類討論,判斷fx的正負(fù)作答即可;(2)把fx代入不等式,化簡(jiǎn)轉(zhuǎn)化為fxmin=1+lnm>2-,構(gòu)造新函數(shù)gm=1+lnm-(1)函數(shù)fx的定義域是0,+∞,可得fx=-=.當(dāng)m≤0時(shí),可知fx>0,所以fx在0,+∞上單調(diào)遞增;當(dāng)m>0時(shí),由fx=0得x=m,可得x∈0,m時(shí),有fx<0,x所以fx在0,m上單調(diào)遞減,fx在m,+∞上單調(diào)遞增.綜上所述:當(dāng)m≤0時(shí),fx在0,+∞上單調(diào)遞增;當(dāng)m>0時(shí),fx在0,m上單調(diào)遞減,在m,+∞上單調(diào)遞增.只需證fx≥=2-成立,只需證fxmin≥2-即可.因?yàn)閙>0,由(1)知,fxmin=fm=1+lnm.令gm=1+lnm-(2-=lnm+-1,則gm=-=,所以gm在0,1上單調(diào)遞減,在1,+∞上單調(diào)遞增,所以當(dāng)m>0時(shí),mfx≥2m-1成立. 2已知函數(shù)f(x)=ex-x-m(m∈R).(2)當(dāng)m=-1時(shí),證明:f(x)>1-.x-x-m>0恒成立對(duì)x>0恒成立,令g(x)=ex-x,故當(dāng)x>0時(shí),g(x)>g(0)=1;故若使ex-x-m>0恒成立對(duì)x>0恒成立,則只需使m≤1;故n(x)≥n(2)=1-②.故由①②可得,f(x)>1-.11(Ⅰ)討論f(x)的單調(diào)性;(Ⅱ)若a<-1,證明:f(x)<-1.(Ⅰ)答案見(jiàn)解析;(Ⅱ)證明見(jiàn)解析.(Ⅱ)由a<-1結(jié)合(Ⅰ)可得f(x)max=的單調(diào)性即可得證. x( x+a.當(dāng)a≥0時(shí),f(x)>0恒成立,∴函數(shù)f(x)在(0,+∞)上單調(diào)遞增;當(dāng)0<x<-時(shí),f(x)>0,∴f(x)在(0,-上單調(diào)遞增;∴f(x)max=f(-=ln(-+a(-=-ln(-a)-1.令g(x)=-lnx-1.∵x>0,g(x)=-<0,∴函數(shù)g(x)在(0,+∞)上單調(diào)遞減.又∵-a>1,∴fxmax=-ln-a-1<-ln1-1=-1,∴f(x)<-1.2已知f(x)=xlnx,g(x)=-x2+ax-32設(shè)h(x)=2lnx+x+(x>0),則h′(x)=,∴[h(x)]min=h(1)=4,∴a≤[h(x)]min=4.證明:(2)問(wèn)題等價(jià)于證明xlnx>-(x∈(0,+∞)),設(shè)m(x)=-(x∈(0,+∞)),則m′(x)=,由題意得[m(x)]max=m(1)=-,3已知函數(shù)f(x)=ax2-xlnx.3(Ⅱ)當(dāng)x>0時(shí),f(x)<xex+.不等式等價(jià)于lnx+>ex-ex,分別構(gòu)造函數(shù)h(x)=lnx+,φ∴f′(x)=2ax-1-lnx≥0在(0,+∞)上恒成立, x x∵x>0,則需要證ex-lnx<ex+min=h()=0,∴h(x)≥0,即lnx+≥0,2.xex=elnx?ex=elnx+x3.==elnx-x4.x+lnx=lnex+lnx=ln(xex)5.x-lnx=lnex-lnx=ln-x16.=x-6.=x=x=elnx(核心公式)x=elnx?ex=elnx+x(3)==elnx-x(4)x+lnx=lnex+lnx=lnxex(5)x-lnx=lnex-lnx=ln(1)==(2)=-x-1lnx-1=-elnx-1?lnx-1(3)xlnx=elnx?lnx(4)==-(-x)e-xxx一個(gè)核心:lnex=x=elnx (2)首先將題意轉(zhuǎn)化為elnx+x+1≥lnx+x+1+1.令t=lnx+x+1,即證:et≥t+1,再構(gòu)造函數(shù)hx=ex-x-1,求其最小值即可證明.故函數(shù)gx不存在極值;x1-a1-aegx+0-gx故gx極大值=ge1-a=a+e11-a==ea-1+1,無(wú)極小值.當(dāng)a<1時(shí),函數(shù)gx有極大值,gx極大值=ea-1+1,不存在極小值.x+1≥,即證:xex+1≥lnx+x+2,lnx+x+1≥lnx+x+1+1.令t=lnx+x+1,故只須證:et≥t+1.設(shè)hx=ex-x-1,則hx=ex-1,故hx在0,+∞上單調(diào)遞增,在-∞,0上單調(diào)遞減,即hxmin=h0=0,所以hx≥0,從而有ex≥x+1.故et≥t+1,即fx≥gx. 數(shù)的底數(shù). x3 x3,則f(x)≥x-3lnx等價(jià)于t-1≥lnt,令gt=lnt-t+1,利用函數(shù)的導(dǎo)數(shù),通過(guò)方法二:令t=x-3lnx,則f(x)≥x-3lnx等價(jià)于et-1≥t,令h(t)=et-(t+1),利用函數(shù)的導(dǎo)數(shù),通過(guò)當(dāng)x>0時(shí),由f(x)=-1得f(x)=,令f(x)>0得x>3,令f(x)<0得0<x<3,1>-1>1>-1>0,20,fx2=0綜上,函數(shù)fx有兩個(gè)零點(diǎn). x3 x3,則x>0時(shí),t>0,且lnt=x-3lnx.于是f(x)≥x-3lnx等價(jià)于t-1≥lnt,所以t=1時(shí),函數(shù)gt取得最大值:ln1-1+1=0,所以gt≤g1=0,即f(x)≥x-3lnx.方法二:令t=x-3lnx,則et-1=-1,于是f(x)≥x-3lnx等價(jià)于et-1≥t,t≥t+1,令h(t)=et-(t+1),則有h(t)=et-1.令h(t)<0,即et-1<0,解得t<0;所以h(t)≥h(0)=e0-1=0,即et-(t+1)≥0.所以et≥t+1,即f(x)≥x-3lnx.13x-x,h(x)=3x2-xlnx,13x-x,3x-1.(i)當(dāng)a≤0時(shí)所以f(x)在R上單調(diào)遞減;(2)當(dāng)a≥1時(shí),f(x)-h(x)=ae3x-x-3x2+xlnx≥e3x-x-3x2+xlnx,要證fx>hx,只需證e3x-x-3x2+xlnx>0,即證-1>3x-lnx,即證e3x-lnx-1>3x-lnx,令t=φx=3x-lnxx>0,則φx=3-=, 3當(dāng)0 3 3 3所以t=φx≥φ=1-ln=ln3e,令g(x)=ex-x-1,則g(x)=ex-1,所以e3x-lnx-1>3x-lnx從而e3x-x-3x2+xlnx>0,所以當(dāng)a≥1時(shí)f(x)>h(x)恒成立.22(1)答案見(jiàn)解析(2)證明見(jiàn)解析(1)分類討論求解函數(shù)的極值即可.ex-x-1,求其最小值即可證明.故函數(shù)gx不存在極值;x1,e1-a1-aee1-a,+∞gx+0-gx故gx極大值=ge1-a=a+e11-a==ea-1+1,無(wú)極小值.x+1≥x+1≥lnx+x+2,lnx+x+1≥lnx+x+1+1.t≥t+1.設(shè)hx=ex-x-1,則hx=ex-1,故hx在0,+∞上單調(diào)遞增,在-∞,0上單調(diào)遞減,故et≥t+1,即fx≥gx. 1(2022貴州黔東南·統(tǒng)考一模)已知函數(shù)f(x)=(m≠0).(1)試討論函數(shù)f(x)的單調(diào)性;a.【分析】(1)fx的定義域?yàn)?,+∞,且fx=,對(duì)m分類討論,明確函數(shù)fx的單調(diào)性; b>ba只需證:blna>alnb即證:>.設(shè)gx=,研究函數(shù)gx的單調(diào)性即可.【詳解】(1)fx的定義域?yàn)?,+∞,且fx=.對(duì)x∈e,+∞,有fx<0,故函數(shù)fx在x∈e,+∞單調(diào)遞減.對(duì)x∈e,+∞,有fx>0,函數(shù)fx在x∈e,+∞單調(diào)遞增.a只需證:blna>alnb即證:>.設(shè)gx=,則gx=當(dāng)x∈e,+∞時(shí),有g(shù)x<0,所以ga>gb,即>.∴>成立故原不等式成立. (1)求函數(shù)fx的單調(diào)區(qū)間;(2)已知m,n是正整數(shù),且1<m<n,證明1+mn>1+nm.①當(dāng)a≤-1時(shí),fx<0在-1,+∞上恒成立,fx的減區(qū)間為-1,+∞,無(wú)增區(qū)間;②當(dāng)a>-1時(shí),令fx>0,解得-1<x<a,令fx<0,解得x>a,所以fx的增區(qū)間為-1,a,減區(qū)間為a,+∞.綜上,當(dāng)a≤-1時(shí),fx的減區(qū)間為-1,+∞,無(wú)增區(qū)間;當(dāng)a>-1時(shí),fx的增區(qū)間為-1,a,減區(qū)間為a,+∞.(2)兩邊同時(shí)取對(duì)數(shù),證明不等式成立等價(jià)于證明nln1+m>mlnn+1,即證明>, xx+1- xx+1x2,所以hx<0,所以hx為0,+∞上的減函數(shù),因?yàn)?<m<n,知hm>hn,即>,即1+mn>1+nm.(2022·(2022·全國(guó)·高三專題練習(xí))已知函數(shù)g(x(=1-.(1)求g(x(的單調(diào)區(qū)間;(1)g(x(的單調(diào)遞增區(qū)間是(1,+∞(,單調(diào)遞減區(qū)間是(0,1(;(2)證明見(jiàn)解析.(1)因?yàn)間(x(=1-,所以gI(x(=-=.所以g(x(的單調(diào)遞增區(qū)間是(1,+∞(,單調(diào)遞減區(qū)間是(0,1(.(2)由(1)知g(x(=1-在(0,1(上單調(diào)遞減,1 e<m<n<1時(shí),g(m(>g(n(,即1->1-,2(2021·全國(guó)·高三專題練習(xí))已知函數(shù)f(x(=lnx-.2(1)求證:函數(shù)f(x(在(0,+∞(上單調(diào)遞增;(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.(2)不妨設(shè)m>n,利用作差法得到-=ln-,然后令=t>1,轉(zhuǎn)化為f(t(,利用其在(0,+∞(上單調(diào)性證明.(1)由題意知,x>0,fI(x(=-=≥0,-=ln-,令=t>1,則ln-=lnt-=f(t(.由(1)知f(x(在(0,+∞(上單調(diào)遞增,f(1(∵t>1,∴f(t(>0.又m>n,∴>lnm-lnn>m-n m+n.33(1)若函數(shù)fx在0,+∞上為單調(diào)增函數(shù),求a的取值范圍;【分析】(1)對(duì)函數(shù)進(jìn)行求導(dǎo)并解不等式fx≥0,轉(zhuǎn)化為二次不等式x2+2-2ax+1≥0在0,+∞上恒【詳解】解:(1)fx=-==,因?yàn)閒x在0,+∞上為單調(diào)增函數(shù),所以fx≥0在0,+∞上恒成立即x2+2-2ax+1≥0在0,+∞上恒成立,2+2-2ax+1≥0,則gx=x+≥2x?=2,當(dāng)且僅當(dāng)x=即x=1時(shí),gx有最小值2,+1>0,設(shè)hx=lnx-,由(1)知hx在1,+∞上是單調(diào)增函數(shù),又>1,所以h>h1=0,即ln->0成立,得到<. 1(2023·四川成都·成都七中??寄M預(yù)測(cè))已知函數(shù)fx=ex-ax2+e2x有兩個(gè)極值點(diǎn)a≤-,x2x1<x2.+x2<2ln2a.x-xx-xx+xx+xx-xx-xx+xx+xx-e2<0,于是g'(x(=<0,所以g(x(在(-∞,0)單調(diào)遞減且g(x(=<0,.x-x(2)因?yàn)閒'(x1(=f'(x2(=0,所以ex+e2=2ax1,ex+e2=2ax2,于是ex-ex=2a(x2-x1(,從而2a=2-x-x--e-u>2u(u>0(,x-xx2-x12>x-xx2-x12令φ(u(=eu-e-u-2u(u>0(,φ'(u(=eu+eu-2≥2eu?e-u-2≥0.所以?(u(在(0,+∞)單調(diào)遞增,所xxx+xx+x2從而eu-e-u>2u(u>0(.所以>e2,于是2a>e2,由(1)知a>,從而x1+x2<2ln2a. (2)將f(x2(=eax-ex2變形為eln(ex(+ln(ex2(=eax+ax,構(gòu)造函數(shù)F(x(=x+ex,根據(jù)其單調(diào)性將方程轉(zhuǎn)化為ax=ln(ex2(,再構(gòu)造函數(shù)h(x(=,利用導(dǎo)數(shù)討論其性質(zhì),結(jié)合圖象可得<x1<e<x2x1x2【詳解】(1)f(x(的定義域?yàn)?0,+∞(,由f(x(=lnx-ax+1≤0,得a≥..=eax-ex2,得lnx2-ax+1=eax-ex2,即ex2+ln(ex2(=eax+ax,即eln(ex(+ln(ex2(=eax+ax.設(shè)F(x(=x+ex,則eln(ex(+ln(ex2(=eax+ax等價(jià)于F(ln(ex2((=F(ax(.易證F(x(在R上單調(diào)遞增,則ax=ln(ex2(,即a=.設(shè)h(x(=,則h,由h,(x(<0,得x>e,從而h(x)max=h(e(=、、=h(e-==0,<x2,由圖可知,<x1<e<x2,0<a<.設(shè)G(t(=lnt-(t>1),G,(t(=>0,設(shè)t=>1,則ln-2?>0,即21(<lnx2-lnx1,則lnx1<x1x2.=.11,且f(x1(=f(x2(=2,證明:0<m<e,且x1+x2<2.≤0和m>0兩種情況,得到函數(shù)的單調(diào)性; 綜上,當(dāng)m≤0時(shí),fx在R上單調(diào)遞增;當(dāng)m>0時(shí),fx在區(qū)間-∞,lnm上單調(diào)遞減,在區(qū)間lnm,+∞上單調(diào)遞增.2是方程m=ex(2-x)的兩個(gè)實(shí)數(shù)根.令g(x)=ex(2-x),則g(x)=ex(1-x),不妨設(shè)x1<x2,因?yàn)閤1,x2是方程m=ex(2-x)的兩個(gè)實(shí)數(shù)根,則x1<1<x2<2.要證x1+x2<2,只需證x1<2-x2.因?yàn)閤1<1,2-x2<1,所以只需證gx1<g2-x2.因?yàn)間x1=gx2,所以只需證gx2<g2-x2.今h(x)=g(x)-g(2-x),1<x<2,則h(x)=g(x)+g(2-x)=ex(1-x)+e2-x(x-1)=(1-x)ex-e2-x=(1-x)?<0在1,2恒成立.所以gx2<g2-x2,即x1+x2<2成立. +x2>4a.(2)構(gòu)造函數(shù)gx=fx-f4a-x,利用導(dǎo)數(shù)研究其單調(diào)性與最值即可證明.【詳解】(1)由題意可知:fx=lnx+x>0?fx=,若a≤0,則fx>0恒成立,即fx單調(diào)遞增,不存在兩顯然當(dāng)x>2a時(shí),fx>0,當(dāng)0<x<2a時(shí),fx<0,則fx在0,2a上單調(diào)遞減,在2a,+∞上單調(diào)遞增,2<2a,且f4a2=2ln2a+ 1 故gt>g=e-2>0,所以f4a2>0,又f1=2a>0,2a<x2,構(gòu)造函數(shù)gx=fx-f4a-x0<x<2a,則gx=+=-<0,即gx單調(diào)遞減,所以gx>g2a=0,即gx1=fx1-f4a-x1>0?fx1=fx2>f4a-x1,因?yàn)?<x1<2a<x2,所以4a-x1>2a,由(1)知fx在2a,+∞上單調(diào)遞增,所以由fx2>f4a-x1?x2>4a-x1,故x1+x2>4a.處理極值點(diǎn)偏移問(wèn)題中的類似于x1x2<afx1=fx2的問(wèn)題的基本步驟如下:①求導(dǎo)確定fx的單調(diào)性,得到x1,x2的范圍;②構(gòu)造函數(shù)Fx=fx-f,求導(dǎo)可得Fx恒正或恒負(fù);③得到fx1與f的大小關(guān)系后,將fx1置換為fx2; x1 x1 1x2<4.求導(dǎo)得f(x)=ax-(2a+1)+=, 2 2 2若0 2 a,當(dāng)0<x<2或 a a時(shí),f(x)>0,當(dāng)2<x a 2 2 a,當(dāng)0< a a a<x<2時(shí),f(x)<0,當(dāng)a≤0時(shí),當(dāng)0<x<2時(shí),f(x)>0,當(dāng)x>2時(shí),f(x)<0,所以a的取值范圍是a≤0.由f(x1)=f(x2),x1≠x2,不妨令0<x1<2<x2,要證x1x2<4,只證x1<,即證fx1<f,就證fx2-f<0,++令g(x)=f(x)-f,x>2,求導(dǎo)得g(x)=f(x)-f?(-=x44x2=4xx=ax-1+=?= 2+3a-x]x3)<0,即f(x2)-f<0?f(x2)<f,又f(x1)=f(x2),因此f(x1)<f,顯然0<x1<2,0<所以x1x2<4. x2, (1)求函數(shù)gx的極值;(2)若hx=fx-gx,求函數(shù)hx的最小值;1x2<1.x-lnx+x1-lnx1=ex-lnx+x2-lnx2,構(gòu)造函數(shù)y=ex+x,根據(jù)其單調(diào)性可得x1-lnx1=x2 -lnx2,構(gòu)造函數(shù)M(x)=x-lnx并研究其單調(diào)性,構(gòu)造函數(shù)T(x)=M(x)-M并研究其單調(diào)性,當(dāng)(2)由題意知函數(shù)hx=-lnx+x的定義域?yàn)?0,+∞).h(x)=-+1=(x-1)-x+x2=ex+x(x-1)x2x2,所以h(x)min=h(1)=e+1.,則由(2)知0<x1<1<x2,0<<1.設(shè)S(x)=h(x)-a,由Sx1=Sx2=0,得-lnx1+x1=-lnx2+x2,即ex-lnx+x1-lnx1=ex-lnx+x2-lnx2,因?yàn)楹瘮?shù)y=ex+x在R上單調(diào)遞增,所以x1-lnx1=x2-lnx2成立.構(gòu)造函數(shù)M(x)=x-lnx,則M(x)=1-=,M(x)>0?x>1,M(x)<0?0<x<1,構(gòu)造函數(shù)T(x)=M(x)-M=x--2lnx,則T,(x)=1+-=≥0,所以函數(shù)T(x)在(0,+∞)上單調(diào)遞增,所以當(dāng)x>1時(shí),T(x)>T(1)=0,即當(dāng)x>1時(shí),M(x)>M,1x2<1.所以M(x1(=M(x2(>M,又M(x)在(0,1)1x2<1.1(2023上·重慶渝中·高三統(tǒng)考)已知函數(shù)f(x(=xlnx-ax2+x,a∈R.1(1)若函數(shù)f(x(是減函數(shù),求a的取值范圍;(1)(1)f,(x(=lnx-2ax+2≤0在(0,+∞(上恒成立,參變分離2a≥在(0,+∞(上恒成立,構(gòu)2=tx1(t>2),從而得到lnx1=-1,lnx2=-(1)f(x(=xlnx-ax2+x,a∈R的定義域?yàn)?0,+∞(,f,(x(=lnx+1-2ax+1=lnx-2ax+2,函數(shù)f(x(是減函數(shù),故f,(x(=lnx-2ax+2≤0在(0,+∞(上恒成立,,(x(>0,u(x(=單調(diào)遞增,,(x(<0,u(x(=單調(diào)遞減,(2)若有兩個(gè)零點(diǎn)x1,x2,則x1lnx1-ax+x1=0,x2lnx2-ax+x2=0,得a=+=+.∵x2>2x1>0則lnx2=ln(tx1(=lnt+lnx1=-1,∴l(xiāng)n(x1x2(=lnx1+lnx2=-1+-1=-2,令h(t(=-2(t>2),則h,(t(=,令φ(t(=-2lnt+t-(t>2),則φ,(t(=-+1+=>0,∴φ(t(在(2,+∞(上單調(diào)遞增,-1,t(>φ(2(=-2ln2==>0,t(=>0,則h(t(在(2,+∞(上單調(diào)遞增,t(>h(2(=3ln2-2=ln,即ln(x1x2(>ln,故x1x2>.22ln(x1x2(=(a+1((x1+x2(,兩式相減得ln=(a+1)(x2-x1(,從而有l(wèi)2=,進(jìn)而要證x1?x2>構(gòu)造函數(shù)F(t(=lnt-=lnt+-2即可證明.【詳解】(1)當(dāng)a=1時(shí),f(x(=lnx+x2-2x(x>0),fI(x(=+x-2=≥0,所以函數(shù)y=f(x(在(0,+∞(上單調(diào)遞增,又因?yàn)閒(1(=-<0,f(4(=ln4>0,所以函數(shù)y=f(x(有且僅有一個(gè)零點(diǎn).1,e>0,φ(x(的大致圖象如圖所示,證明:不妨設(shè)0<x1<x2,且=兩式相加得ln(x1x2(=(a+1((x1+x2(,兩式相減得ln=(a+1)x2-x1,所以l2=2>e2,只需證lnx1x2=?ln>2,,設(shè)t=(t>1),令Ft=lnt-2t1=lnt+t1則Ft=-=>0,所以函數(shù)Ft在1,+∞上單調(diào)遞增,且F1=0,所以Ft>0,即lnt>,所以x1?x (1)討論fx的單調(diào)性;(2)等價(jià)變形給定等式,結(jié)合a=1時(shí)函數(shù)f(x)的單調(diào)性,由0<x1<1<x2,fx1=fx2,再構(gòu)造函數(shù)lnx+1ax(2)由ex1x=ex2x,兩邊取對(duì)數(shù)得x2lnx1+1=x1lnx2+1,即=,f(x)max=f(1)=1,而f=0,x>1時(shí),f(x)>0恒成立,0<x1<1<x2,滿足fx1=fx2,∈[2,+∞),則x+x>x≥4>2成立;則g(x)=f(x)+f(2-x)=-->--=->0,于是fx1=fx2>f2-x2,2又x+1>2x=2x1,x+1>2x=2x2,則有x+1+x+1>2x1+x2>4,則x+x>2,所以x+x>2. (1)討論函數(shù)fx的單調(diào)性:2是方程fx=0的兩不等實(shí)根,求證:x+x>2e;(2)由lnx-ax2=0?2lnx-2ax2=0可得,x1,x2是方程lnx2-2ax由fx=lnx-ax2得:fx=-2ax=,當(dāng)a≤0時(shí),fx>0,fx在0,+∞上單調(diào)遞增;當(dāng)a>0時(shí),由fx>0得0<x<,由fx<0得x>,上單調(diào)遞減.2是方程lnx-ax2=0的兩不等實(shí)根,lnx-ax2=0?2lnx-2ax2=0,2是方程lnx2-2ax2=0的兩不等實(shí)根,令1<t1<e<t2,要證x+x>2e,只需證t1+t2>2e,則ht=gt-g2e-t=-=,令φt=2e-tlnt-tln2e-t,則φt=-1-lnt-ln2e-t+=+-ln-t2+2et>+-2>所以φt在1,e上遞增,φt<φe=0,所以ht=gt-g2e-t<0,所以gt<g2e-t,所以gt2=gt1<g2e-t1,所以t2>2e-t1,即t1+t2>2e,所以x+x>2e.,令0<x1<x2,只需證<lnx2lnx1,只需證211-lnx<0x=>1(,令φx=-lnx(x>1),φx=-=<0,所以φx在1,+∞上單調(diào)遞減,所以φx<φ1=0.因?yàn)閘1=l2,所以lnt2=lnt2t1+t2<所以lnt1+lnt2>2,即t1t2>e2,所以t1+t2>2t1t2>2e.1(2023·山西·校聯(lián)考模擬預(yù)測(cè))已知函數(shù)f(x(=-ax.1(1)若f(x(≤-1,求實(shí)數(shù)a的取值范圍;(2)若f(x(有2個(gè)不同的零點(diǎn)x1,x2(x1<x2),求證:2x+3x>.(1)[1,+∞((2)證明見(jiàn)解析到G(t(在(1,+∞(上單調(diào)遞增,G(t(>G(1(=0,得到證明.(1)因?yàn)楹瘮?shù)f(x(的定義域?yàn)?0,+∞(,所以f(x(≤-1成立,等價(jià)于a≥成立.令h(x(=,則h'(x(=,令g(x(=1-x-2lnx,則g'(x(=-1-<0,所以g(x(在(0,+∞(內(nèi)單調(diào)遞減,(2)f(x(有2個(gè)不同的零點(diǎn)等價(jià)于a=有2個(gè)不同的實(shí)數(shù)根.令F(x(=,則F'(x(=,當(dāng)F'(x(=0時(shí),解得x=e.所以當(dāng)x∈(0,e(時(shí),F(xiàn)'(x(>0,F(xiàn)(x(單調(diào)遞增,當(dāng)x∈(e,+∞(時(shí),F(xiàn)'(x(<0,F(xiàn)(x(單調(diào)遞減,所以y=F(x(在x=e處取極大值為F(e(=.t2=l2=ln又因?yàn)閤=l1x2>.因?yàn)閠>1,即證lnt->0.令G(t(=lnt-(t>1(,則G'(t(=t((22所以G(t(在(1,+∞(上單調(diào)遞增,G(t(>G(1(=0,22(1)若f(x(≤1,求a的取值范圍;,使得f(x1(=f(x2(,則x+x>2.(1)[1,+∞((2)證明見(jiàn)解析(1)f(x)=,f,(x)=-,令f,(x)=0,解得x=1,,(x)>0,(x)<0,f(x)在(1,+∞)單調(diào)遞減, a所以f(x)max=f(1 a a a<x22+x2>2要證x1+x2>2>2-x2,即f(x1)>f(2-x2),f(x2)>f(2-x2),令g(x)=f(x)-f(2-x),x∈(1,,(x)=--=-->--=-×=-1×ln[-(x-1)2+1]>0,所以g(x)在(1,2)上單調(diào)遞增,所以g(x)≥g(1)=0,即f(x)>f(2-x),x∈(1,2),所以x1+x2>2即x+x>2(x1+x2)-2>2.3.三角函數(shù)與函數(shù)的重要放縮公式:x≥sinx(x≥0(. 1(2023·全國(guó)·高三專題練習(xí))已知函數(shù)f(x(=ex-x-1.(1)答案見(jiàn)解析;(2)答案見(jiàn)解析.(1)求導(dǎo),根據(jù)導(dǎo)函數(shù)分析f(x(的單調(diào)性,即可得到f(x(≥f(x(min=f(0(=0,即可證明f(x(≥0;(2)令g(x(=ex-mx+cosx-2,求導(dǎo),根據(jù)放縮的思路得到g,(x(≥0,然后利用g(x(在[0,+∞(上的單 調(diào)性即可證明ex-mx+cosx-2≥0.(1)證明:f,(x(=ex-1,當(dāng)x>0時(shí),f,(x(>0,f(x(單調(diào)遞增;,(x(<0,f(x(單調(diào)遞減,f(x(≥f(x(min=f(0(=0,x-x-1≥0,當(dāng)且僅當(dāng)x=0時(shí)取等號(hào),∴fx≥0.(2)令gx=ex-mx+cosx-2,則gx=ex-m-sinx,又m≤1,所以gx≥x+1-1-sinx=x-sinx,令hx=x-sinx,則hx=1-cosx,當(dāng)x≥0時(shí),hx≥0,所以hx在[0,+∞上單調(diào)遞增,所以當(dāng)x∈[0,+∞時(shí),hx≥h0=0,則gx≥0,gx在[0,+∞上單調(diào)遞增,所以當(dāng)m≤1時(shí),不等式ex-mx+ 2(2023·四川資陽(yáng)·統(tǒng)考模擬預(yù)測(cè))已知函數(shù)fx=x3-ax+1.(1)y=-x+1或y=x-1(2)證明見(jiàn)解析(1)易知1,0不在fx上,設(shè)切點(diǎn)x0,x-x0+1,由導(dǎo)數(shù)的幾何意義求出切線方程,將1,0代入(2)構(gòu)造gx=x3-ax+1-cosxx>0,求得gx=3x2-a+sinx,再令ux=gx,通過(guò)研究u′x正負(fù)確定gx單調(diào)性,再由g′x正負(fù)研究gx最值,進(jìn)而得證.設(shè)切點(diǎn)x0,x-x0+1,則切線方程為y-x-x0+1=3x-1x-x0,該切線過(guò)點(diǎn)1,0,則-x+x0-1=3x-11-x0,即2x-3x=0,(2)設(shè)gx=x3-ax+1-cosxx>0,則gx=3x2-a+sinx,令ux=gx=3x2-a+sinxx>0,則ux=6x+cosx,故x>0時(shí)均有ux>0,則ux即gx在0,+∞上單調(diào)遞增,g0=-a, 1(2022·新疆·統(tǒng)考三模)已知函數(shù)f(x(1)a=0(2)證明見(jiàn)解析(2)將fx≤2ax變形成-ax≤0,故只需證g(x)= sinx-ax≤0,用導(dǎo)數(shù)法證明g(x)max≤證-ax≤0,令g(x)=-ax,x)=cosx(2+x(-sinx)-a=(2-a(x)≤-=≤0 3x(2)根據(jù)a≥1和a<1分類討論,結(jié)合第一問(wèn)的結(jié)論和基本不等式即可求解.【詳解】(1)由f(x)=excosx可得f,(x)=ex(cosx-sinx)=2excos+x令f,(x)=0得,x所以f(x)min=min〈f(0),f〈,因?yàn)閒=>=>1=f(0),所以f(x(min=1,3x>0,3×0=1+a<2, 1已知函數(shù)f(x(=lnx+x2-ax(a∈R(.(1)求函數(shù)fx的單調(diào)區(qū)間;(2)設(shè)fx存在兩個(gè)極值點(diǎn)x1,x2,且x1<x2,若0<x1<,求證:fx1-fx2>-ln2.(1)答案見(jiàn)解析(2)證明見(jiàn)解析1,x2代入fx1-fx2中進(jìn)行化簡(jiǎn),∵0<x1<,所以可以求出最小值,即可證出fx1-fx2>-ln2.(1)由題意可知fx=+2x-a=,x>0,當(dāng)a≤0時(shí),fx>0,則fx在0,+∞是單調(diào)遞增;2-8≤0 fx在0,和,+∞∴x2=,a=2x1+(用x1分別表示出x2和a)∴fx1-fx2=lnx1+x-ax1-lnx2+x-ax2,整理,得hx=-23-2x=-4x4x2-1=-212<0恒成立, 2已知函數(shù)f(x)=lnx+ax2-x.(2)設(shè)f′(x)為f(x)的導(dǎo)函數(shù),若x1,x2是函數(shù)f′(x)的兩個(gè)不相等的零點(diǎn),求證:f(x1)+f(x2)<x1+x2-5(1)極大值是f=-ln2-,無(wú)極小值;(2)證明見(jiàn)解析(1)由a=-1,得到f(x)=lnx-x2-x,求導(dǎo)fx=-,令fx>0,fx<0求布,得到0<a<,然后利用韋達(dá)定理,得到f(x1)+f(x2)-x1-x2=ln--1,利用導(dǎo)數(shù)法證明. 則f,(x(=-2x-1=-. 2令f,(x(>0,得0 2;令f,(x(<0,得x> .2故f(x)的極大值是f=-ln2-,綜上,函數(shù)f(x)的極大值是f=-ln2-,無(wú)極小值.x1x2=>0解之得0<a<.f(x1)+f(x2)-x1-x2=lnx1+lnx2+ax+ax-2(x1x1x2=>0=a(x+x)-2(x1+x2)+ln(x1x2)=a[(x1+x2)2-2x1x2]-2(x1+x2)+ln(x1x2)故g(t)<g(4)=ln4-7<2-7=-5,所以f(x1)+f(x2)<x1+x2-5.1已知函數(shù)f(x(=x--alnx(a∈R),1(1)求曲線y=f(x(在點(diǎn)(e,-處的切(2)f,(x(是f(x(的導(dǎo)函數(shù),若函數(shù)g(x(=x2?f,(x(-ax+2lnx有兩個(gè)極值點(diǎn)x1,x2,且0<x1<x2<e,求+<g(x2(+e2-4.+<g(x2(+e2-4”等價(jià)于“證明g(x1(-g(x2(<e2--4”.表達(dá)函數(shù)g(x(=x2f'(x(+2lnx-ax=x2-2ax+2lnx+1,可得g(x1(-g(x2(=-x+4lnx1,<x1<1令h(t(=-t2+4lnt,h(t(=--t+=-<0,求新函數(shù)h(t(在區(qū)間的最值,即可得證.又由f,(x(=1+-,即f,(x(=1+-,故所求切線的斜率為f,(e(=1+-=,所以切線方程為y+=(x-e(,即y=-,令y=0,得x=2e;令x=0,得y=-,·fx+2lnx-ax=x2-2ax+2lnx+1.則函數(shù)y=gx的定義域?yàn)?,+∞,且gx=2x-2a+=,“證明gx1+<gx2+e2-4”等價(jià)于“證明gx1-gx2<e2--4”.gx1-gx2=x-2ax1+2lnx1-x+2ax2-2lnx2=x1+x2·x1-x2-2ax1-x2+4lnx1=-x1+x2x1-x2+4lnx1=-x+4lnx1<x1<1(.設(shè)ht=-t2+4lnt<t<1則ht=--2t+=-<0在t∈,1(上恒成立.gx2的取值范圍是2--4所以gx1+<gx2+e2-4.2已知函數(shù)fx=x2+lnx+mx,(m∈R).2(1)若fx存在兩個(gè)極值點(diǎn),求實(shí)數(shù)m的取值范圍;2為fx的兩個(gè)極值點(diǎn),證明:-f>.(1)-∞,-2(2)證明見(jiàn)解析(1)f′(x)=x+(2)由(1)知m<-2,且x1+x2=-m,x1x2=1,則-f=-ln(--+,只需證明-ln(--1->0,即可解得m的取值范圍. x(1)(1)f′(x)= x+m,(x>0),若f(x)存在兩個(gè)極值點(diǎn),則f′(max=-2,所以m<-2,所以m的取值范圍為(-∞,-2).所以-f=-ln--m((=-lnlnt<t-1對(duì)t>1成立,令gt=lnt-t-1,g′(t)=<0,所以g(t)=lnt-(t-1)單調(diào)遞減,則有g(shù)(t)=lnt-(t-1)<g(1)=0.x≥ex;(3)1-≤lnx≤x-1;(4)lnx≤. x2-x1<2a+1+e-2.求證:|a-b|<nlnt+nn.證明:設(shè)函數(shù)f(x)=xlnx(x>0),f′(x)=1+lnx(x>0).設(shè)p(x)=1+lnx(x>0),f′(x)<0,f(x)=xlnxf′(x)>0,f(x)=xlnx單調(diào)遞增.:g(x)=-x-e-2和l2:m(x)=x-1,令h(x)=f(x)-g(x)=xlnx+x+e-2(x>0),則h′(x)=2+lnx,當(dāng)x>e-2時(shí),h′(x)>0,h(x)單調(diào)遞增.于是h(x)≥h(e-2)=0,從而f(x)≥g(x),令φ(x)=f(x)-m(x)=xlnx-x+1(x>0),則φ′(x)=lnx,<x1<x2<x2′,x2-x1<x2′-x1′=(a+1)-(-a-e-2)=2a+1+e-2. 2已知函數(shù)f(x)=4ex-1+ax2,曲線y=f(x)在x=1處的切線方程為y=bx+1.x-1-x3-3x-2lnx≥0.(1)fI(x)=4ex-1+2ax,由曲線y=f(x)在x=1處的切線方程為y=bx+1知:設(shè)g(x)=4ex-1-x2-2x-1,則gI(x)=4ex-1-2x-2,gn(x)=4ex-1-2,易知gn(x)在(0,+∞)單調(diào)遞增;且0(x0,+∞(單調(diào)遞增,其中g(shù)I(0)=-2<0,x-1-x3-3x-2lnx≥0,只需證4ex-1-x2-3-≥0.x-1-x2≥2x+1.2-x-lnx≥0,設(shè)φ(x)=x2-x-lnx,則φI(x)=2x-1-==,易知φ(x)在(0,1x-1-x3-3x-2lnx≥0成立.1已知函數(shù)f(x)=4ex-1+ax2,曲線y=f(x)在x=1處的切線方程為y=bx+1.1(3)證明不等式:4xex-1-x3-3x-2lnx≥0.設(shè)g(x)=4ex-1-x2-2x-1,則g′(x)=4ex-1-2x-2,所以當(dāng)x>0且x≠1時(shí),曲線y=f(x)的圖象在切線y=bx+1的上方.x-1-x3-3x-2lnx≥0,只需證4ex-1-x2-3-≥0.x-1-x2≥2x+1.故只需證2x+1≥3+,即證x2-x-lnx≥0,即不等式4xex-1-x3-3x-2lnx≥0成立.2(2013·新課標(biāo)II卷)已知函數(shù)fx=ex-lnx+m①2(1)設(shè)x=0是fx的極值點(diǎn),求m并討論fx的單調(diào)性;x-,x>-1,因?yàn)閤=0是fx的極值點(diǎn),所以f0=1-=0,解得:m=1,故fx=ex-=,令ux=x+1ex-1x>-1,則ux=x+2ex>0,所以u(píng)x在-1,+∞上單調(diào)遞增,又u0=0,所以當(dāng)-1<x<0時(shí),ux<0,故fx<0;當(dāng)x>0時(shí),ux>0,故fx>0,從而fx在-1,0上單調(diào)遞減,在0,+∞上單調(diào)遞增.(2)證法1:當(dāng)m≤2時(shí),fx=ex-lnx+m≥ex-lnx+2,令gx=ex-lnx+2,x>-2,則gx=ex-=,令hx=x+2ex-1x>-2,則hx=x+3ex>0,所以hx在-2,+∞上單調(diào)遞增,結(jié)合h-1=-1<0,h0=1>0知存在唯一的x0使hx0=0且x0∈-1,0,當(dāng)-2<x<x0時(shí),hx<0,所以gx<0,當(dāng)x>x0時(shí),hx>0,所以gx>0,從而gx在-2,x0上單調(diào)遞減,在x0,+∞上單調(diào)遞增,故gxmin=gx0=ex-lnx0+2①,因?yàn)閔x0=x0+2ex-1=0,所以ex=,兩邊取對(duì)數(shù)得:x0=-
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國(guó)慶節(jié)團(tuán)建主題活動(dòng)方案
- ktv國(guó)慶節(jié)的朋友圈活動(dòng)方案
- 2024-2025學(xué)年新教材高中語(yǔ)文 第三單元 7.1 青蒿素:人類征服疾病的一小步(1)說(shuō)課稿 部編版必修下冊(cè)
- 2024-2025學(xué)年高中語(yǔ)文 第二單元 七 仁義禮智我固有之說(shuō)課稿5 新人教版選修《先秦諸子選讀》
- 2025變更勞動(dòng)合同范文
- 2025智能化施工合同
- Unit 12 Weather(說(shuō)課稿)-2024-2025學(xué)年滬教牛津版(深圳用)英語(yǔ)四年級(jí)上冊(cè)
- 門診手術(shù)策劃方案
- 出資比例 英語(yǔ)合同范例
- 云杉買賣合同范例
- 2025年華能新能源股份有限公司招聘筆試參考題庫(kù)含答案解析
- 《中國(guó)心力衰竭診斷和治療指南(2024)》解讀完整版
- 《檔案管理課件》課件
- 2024年度中國(guó)共產(chǎn)主義共青團(tuán)團(tuán)課課件版
- 2025年中考物理終極押題猜想(新疆卷)(全解全析)
- 脛骨骨折的護(hù)理查房
- 《先秦漢魏晉南北朝詩(shī)》(精校WORD版)
- 分包商座談會(huì)領(lǐng)導(dǎo)致辭
- GB/T 16679-1996信號(hào)與連接的代號(hào)
- 高三考前押題卷文科綜合地理試卷(解析版)
- 北郵工程數(shù)學(xué)期末試卷B卷
評(píng)論
0/150
提交評(píng)論