版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖北省宜昌二中高三第三次模擬考試數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)是定義域為的偶函數(shù),且滿足,當時,,則函數(shù)在區(qū)間上零點的個數(shù)為()A.9 B.10 C.18 D.202.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.3.已知函數(shù)為奇函數(shù),則()A. B.1 C.2 D.34.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知傾斜角為的直線與直線垂直,則()A. B. C. D.6.如下的程序框圖的算法思路源于我國古代數(shù)學名著《九章算術》中的“更相減損術”.執(zhí)行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.157.若為虛數(shù)單位,則復數(shù)在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.在正方體中,E是棱的中點,F(xiàn)是側(cè)面內(nèi)的動點,且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值9.若θ是第二象限角且sinθ=,則=A. B. C. D.10.命題“”的否定是()A. B.C. D.11.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.112.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數(shù)學家和物理學家,他和高斯、牛頓并列被稱為世界三大數(shù)學家.據(jù)說,他自己覺得最為滿意的一個數(shù)學發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.下圖是一個算法的流程圖,則輸出的x的值為_______.14.正四面體的一個頂點是圓柱上底面的圓心,另外三個頂點圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.15.某中學舉行了一次消防知識競賽,將參賽學生的成績進行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數(shù)是80,則成績在區(qū)間的學生人數(shù)是__________.16.有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數(shù),則對應的排法有______種;______;三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.18.(12分)如圖,在四棱錐中,底面是矩形,四條側(cè)棱長均相等.(1)求證:平面;(2)求證:平面平面.19.(12分)已知函數(shù).(1)當時,解關于x的不等式;(2)當時,若對任意實數(shù),都成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù)(1)當時,若恒成立,求的最大值;(2)記的解集為集合A,若,求實數(shù)的取值范圍.21.(12分)如圖,在四棱錐中,平面,,為的中點.(1)求證:平面;(2)求二面角的余弦值.22.(10分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由已知可得函數(shù)f(x)的周期與對稱軸,函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),作出函數(shù)f(x)與g(x)的圖象如圖,數(shù)形結合即可得到答案.【詳解】函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)等價于函數(shù)f(x)與g(x)圖象在上交點的個數(shù),由f(x)=f(2﹣x),得函數(shù)f(x)圖象關于x=1對稱,∵f(x)為偶函數(shù),取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數(shù)周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數(shù),∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數(shù)f(x)與g(x)的圖象如圖:由圖可知,兩函數(shù)圖象共10個交點,即函數(shù)F(x)=f(x)在區(qū)間上零點的個數(shù)為10.故選:B.【點睛】本題考查函數(shù)的零點與方程根的關系,考查數(shù)學轉(zhuǎn)化思想方法與數(shù)形結合的解題思想方法,屬于中檔題.2、C【解析】
以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當?shù)闹苯亲鴺讼?,是一道基礎題.3、B【解析】
根據(jù)整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數(shù).而為奇函數(shù),為偶函數(shù),所以為偶函數(shù),故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù)值,屬于基礎題.4、D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因為x,,當時,不妨取,,故時,不成立,當時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.5、D【解析】
傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式即可得出結果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關系,同角三角函數(shù)基本關系式,考查計算能力,屬于基礎題.6、A【解析】
根據(jù)題意可知最后計算的結果為的最大公約數(shù).【詳解】輸入的a,b分別為,,根據(jù)流程圖可知最后計算的結果為的最大公約數(shù),按流程圖計算,,,,,,,易得176和320的最大公約數(shù)為16,故選:A.【點睛】本題考查的是利用更相減損術求兩個數(shù)的最大公約數(shù),難度較易.7、D【解析】
根據(jù)復數(shù)的運算,化簡得到,再結合復數(shù)的表示,即可求解,得到答案.【詳解】由題意,根據(jù)復數(shù)的運算,可得,所對應的點為位于第四象限.故選D.【點睛】本題主要考查了復數(shù)的運算,以及復數(shù)的幾何意義,其中解答中熟記復數(shù)的運算法則,準確化簡復數(shù)為代數(shù)形式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、C【解析】
分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進行判斷.【詳解】對于,設平面與直線交于點,連接、,則為的中點分別取、的中點、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結合平面,可得直線平面,即點是線段上上的動點.正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯誤.對于,因為,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點睛】本題考查了正方形的性質(zhì)、空間位置關系、空間角、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.9、B【解析】由θ是第二象限角且sinθ=知:,.所以.10、D【解析】
根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.11、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質(zhì)及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.12、C【解析】
設球的半徑為R,根據(jù)組合體的關系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學史了解,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
利用流程圖,逐次進行運算,直到退出循環(huán),得到輸出值.【詳解】第一次:x=4,y=11,第二次:x=5,y=32,第三次:x=1,y=14,此時14>10×1+3,輸出x,故輸出x的值為1.故答案為:.【點睛】本題主要考查程序框圖的識別,“還原現(xiàn)場”是求解這類問題的良方,側(cè)重考查邏輯推理的核心素養(yǎng).14、【解析】
設正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點睛】本題主要考查多面體與旋轉(zhuǎn)體體積的求法,考查計算能力,屬于中檔題.15、30【解析】
根據(jù)頻率直方圖中數(shù)據(jù)先計算樣本容量,再計算成績在80~100分的頻率,繼而得解.【詳解】根據(jù)直方圖知第二組的頻率是,則樣本容量是,又成績在80~100分的頻率是,則成績在區(qū)間的學生人數(shù)是.故答案為:30【點睛】本題考查了頻率分布直方圖的應用,考查了學生綜合分析,數(shù)據(jù)處理,數(shù)形運算的能力,屬于基礎題.16、36;1.【解析】
的可能取值為0,1,2,3,對應的排法有:.分別求出,,,,由此能求出.【詳解】解:有2名老師和3名同學,將他們隨機地排成一行,用表示兩名老師之間的學生人數(shù),則的可能取值為0,1,2,3,對應的排法有:.∴對應的排法有36種;,,,,∴故答案為:36;1.【點睛】本題考查了排列、組合的應用,離散型隨機變量的分布列以及數(shù)學期望,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)將直線的參數(shù)方程化為直角坐標方程,由點到直線距離公式可求得圓心到直線距離,結合垂徑定理即可求得的長;(2)將的極坐標化為直角坐標,將直線方程與圓的方程聯(lián)立,求得直線與圓的兩個交點坐標,由中點坐標公式求得的坐標,再根據(jù)兩點間距離公式即可求得.【詳解】(1)直線的參數(shù)方程為(為參數(shù)),化為直角坐標方程為,即直線與曲線交于兩點.則圓心坐標為,半徑為1,則由點到直線距離公式可知,所以.(2)點的極坐標為,化為直角坐標可得,直線的方程與曲線的方程聯(lián)立,化簡可得,解得,所以兩點坐標為,所以,由兩點間距離公式可得.【點睛】本題考查了參數(shù)方程與普通方程轉(zhuǎn)化,極坐標與直角坐標的轉(zhuǎn)化,點到直線距離公式應用,兩點間距離公式的應用,直線與圓交點坐標求法,屬于基礎題.18、(1)證明見解析;(2)證明見解析.【解析】
證明:(1)在矩形中,,又平面,平面,所以平面.(2)連結,交于點,連結,在矩形中,點為的中點,又,故,,又,平面,所以平面,又平面,所以平面平面.19、(1)(2)【解析】
(1)當時,利用含有一個絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點分段法去絕對值,將表示為分段函數(shù)的形式,求得的最小值,進而求得的取值范圍.【詳解】(1)當時,由得由得解:,得∴當時,關于的不等式的解集為(2)①當時,,所以在上是減函數(shù),在是增函數(shù),所以,由題設得,解得.②當時,同理求得.綜上所述,的取值范圍為.【點睛】本小題主要考查含有一個絕對值不等式的求法,考查利用零點分段法解含有兩個絕對值的不等式,屬于中檔題.20、(1);(2)【解析】
(1)當時,由題意得到,令,分類討論求得函數(shù)的最小值,即可求得的最大值.(2)由時,不等式恒成立,轉(zhuǎn)化為在上恒成立,得到,即可求解.【詳解】(1)由題意,當時,由,可得,令,則只需,當時,;當時,;當時,;故當時,取得最小值,即的最大值為.(2)依題意,當時,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,則,所以,所示實數(shù)的取值范圍是.【點睛】本題主要考查了含絕對值的不等式的解法,以及不等式的恒成立問題的求解與應用,著重考查了轉(zhuǎn)化思想,以及推理與計算能力.21、(1)見解析;(2)【解析】
(1)取的中點,連接,根據(jù)中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線為軸建立空間直角坐標系,再求得平面的法向量與平面的法向量進而求得二面角的余弦值即可.【詳解】(1)證明:如圖,取的中點,連接.又為的中點,則是的中位線.所以且.又且,所以且.所以四邊形是平行四邊形.所以.因為,為的中點,所以.因為,所以.因為平面,所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線為軸建立如圖所示的空間直角坐標系:因為,所以點.則.設平面的法向量為,由,得,令,得平面的一個法向量為;顯然平面的一個法向量為;設二面角的大小為,則.故二面角的余弦值是.【點睛】本題主要考查了線面垂直的證明以及建立空間直角坐標系求解二面角的問題,需要用到線線垂直與線面垂直的轉(zhuǎn)換以及法向量的求法等.屬于中檔題.22、(1).(2).【解析】
(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年江門貨運資格證500道題庫
- 單車位租賃合同范例
- 婚禮跟妝合同范例
- 2025年新疆貨運車從業(yè)考試題
- 顯微鏡購買合同范例
- 2025年宜春年貨運從業(yè)資格證考試從業(yè)從業(yè)資格資格題庫及答案
- 天府新區(qū)航空旅游職業(yè)學院《環(huán)境設計專題》2023-2024學年第一學期期末試卷
- 《12 圖文并茂-精確設置圖片尺寸》教學實錄-2023-2024學年清華版(2012)信息技術三年級下冊
- 2025年山東貨物運輸從業(yè)資格考試答題軟件
- 2025年涼山州駕駛資格證模擬考試
- 低空經(jīng)濟產(chǎn)業(yè)園項目可行性研究報告
- 中國神話故事繪本倉頡造字
- MOOC 心理健康與創(chuàng)新能力-電子科技大學 中國大學慕課答案
- 中華傳統(tǒng)造型的藝術之美-中國美術史專題精講智慧樹知到期末考試答案章節(jié)答案2024年山東工藝美術學院
- 黃蒿界礦井及選煤廠建設項目環(huán)境影響報告書
- 2023-2024學年高一下學期家長會 課件
- 感動中國人物張桂梅心得體會(30篇)
- 知識點總結(知識清單)-2023-2024學年人教PEP版英語六年級上冊
- 社會醫(yī)學課件第2章醫(yī)學模式-2024鮮版
- 德勤測評能力測試題及答案
- 《囚歌》教學課件
評論
0/150
提交評論