版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年廣州順德區(qū)高三一診考試數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,,,.若實數(shù),滿足不等式組,則目標(biāo)函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值2.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.3.已知命題p:“”是“”的充要條件;,,則()A.為真命題 B.為真命題C.為真命題 D.為假命題4.已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點()A.先向左平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變B.先向右平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C.先向右平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變D.先向左平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變5.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20176.已知全集,集合,則=()A. B.C. D.7.記集合和集合表示的平面區(qū)域分別是和,若在區(qū)域內(nèi)任取一點,則該點落在區(qū)域的概率為()A. B. C. D.8.3本不同的語文書,2本不同的數(shù)學(xué)書,從中任意取出2本,取出的書恰好都是數(shù)學(xué)書的概率是()A. B. C. D.9.已知函數(shù)在區(qū)間上恰有四個不同的零點,則實數(shù)的取值范圍是()A. B. C. D.10.設(shè)集合,集合,則=()A. B. C. D.R11.已知,,分別是三個內(nèi)角,,的對邊,,則()A. B. C. D.12.已知與函數(shù)和都相切,則不等式組所確定的平面區(qū)域在內(nèi)的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點P,且點P關(guān)于直線x-y=0的對稱點Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.14.已知的展開式中項的系數(shù)與項的系數(shù)分別為135與,則展開式所有項系數(shù)之和為______.15.在平面直角坐標(biāo)系xOy中,己知直線與函數(shù)的圖象在y軸右側(cè)的公共點從左到右依次為,,…,若點的橫坐標(biāo)為1,則點的橫坐標(biāo)為________.16.已知等比數(shù)列滿足,,則該數(shù)列的前5項的和為______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,為正數(shù),且,證明:(1);(2).18.(12分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點為極點、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標(biāo).19.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.20.(12分)設(shè)都是正數(shù),且,.求證:.21.(12分)已知函數(shù).(1)證明:當(dāng)時,;(2)若函數(shù)只有一個零點,求正實數(shù)的值.22.(10分)已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)若,為數(shù)列的前項和.求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B【點睛】本題考查了目標(biāo)函數(shù)最值是否存在問題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.2、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.3、B【解析】
由的單調(diào)性,可判斷p是真命題;分類討論打開絕對值,可得q是假命題,依次分析即得解【詳解】由函數(shù)是R上的增函數(shù),知命題p是真命題.對于命題q,當(dāng),即時,;當(dāng),即時,,由,得,無解,因此命題q是假命題.所以為假命題,A錯誤;為真命題,B正確;為假命題,C錯誤;為真命題,D錯誤.故選:B【點睛】本題考查了命題的邏輯連接詞,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運算的能力,屬于中檔題.4、D【解析】
由函數(shù)的圖象關(guān)于直線對稱,得,進(jìn)而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點“先向左平移個單位長度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運算求解能力,是中檔題5、D【解析】
依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.6、D【解析】
先計算集合,再計算,最后計算.【詳解】解:,,.故選:.【點睛】本題主要考查了集合的交,補(bǔ)混合運算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.7、C【解析】
據(jù)題意可知,是與面積有關(guān)的幾何概率,要求落在區(qū)域內(nèi)的概率,只要求、所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.【詳解】根據(jù)題意可得集合所表示的區(qū)域即為如圖所表示:的圓及內(nèi)部的平面區(qū)域,面積為,集合,,表示的平面區(qū)域即為圖中的,,根據(jù)幾何概率的計算公式可得,故選:C.【點睛】本題主要考查了幾何概率的計算,本題是與面積有關(guān)的幾何概率模型.解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積.8、D【解析】
把5本書編號,然后用列舉法列出所有基本事件.計數(shù)后可求得概率.【詳解】3本不同的語文書編號為,2本不同的數(shù)學(xué)書編號為,從中任意取出2本,所有的可能為:共10個,恰好都是數(shù)學(xué)書的只有一種,∴所求概率為.故選:D.【點睛】本題考查古典概型,解題方法是列舉法,用列舉法寫出所有的基本事件,然后計數(shù)計算概率.9、A【解析】
函數(shù)的零點就是方程的解,設(shè),方程可化為,即或,求出的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個數(shù)得出的范圍.【詳解】由題意得有四個大于的不等實根,記,則上述方程轉(zhuǎn)化為,即,所以或.因為,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;所以在處取得最小值,最小值為.因為,所以有兩個符合條件的實數(shù)解,故在區(qū)間上恰有四個不相等的零點,需且.故選:A.【點睛】本題考查復(fù)合函數(shù)的零點.考查轉(zhuǎn)化與化歸思想,函數(shù)零點轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學(xué)生分析問題解決問題的能力.10、D【解析】試題分析:由題,,,選D考點:集合的運算11、C【解析】
原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【點睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識;考查運算求解能力,推理論證能力,屬于中檔題.12、B【解析】
根據(jù)直線與和都相切,求得的值,由此畫出不等式組所表示的平面區(qū)域以及圓,由此求得正確選項.【詳解】.設(shè)直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數(shù)得,化簡得③.構(gòu)造函數(shù),,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應(yīng)的區(qū)域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區(qū)域在內(nèi)的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B【點睛】本小題主要考查根據(jù)公共切線求參數(shù),考查不等式組表示區(qū)域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查分析思考與解決問題的能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)圓C1上存在點P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉(zhuǎn)化成兩個新圓有公共點求參數(shù)范圍.【詳解】設(shè)圓C1上存在點P(x0,y0)滿足題意,點P關(guān)于直線x-y=0的對稱點Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點即可,所以|r-1|≤≤r+1,解得.故答案為:【點睛】此題考查圓與圓的位置關(guān)系,其中涉及點關(guān)于直線對稱點問題,兩個圓有公共點的判定方式.14、64【解析】
由題意先求得的值,再令求出展開式中所有項的系數(shù)和.【詳解】的展開式中項的系數(shù)與項的系數(shù)分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64【點睛】本題考查了二項式定理,考查了賦值法求多項式展開式的系數(shù)和,屬于基礎(chǔ)題.15、1【解析】
當(dāng)時,得,或,依題意可得,可求得,繼而可得答案.【詳解】因為點的橫坐標(biāo)為1,即當(dāng)時,,所以或,又直線與函數(shù)的圖象在軸右側(cè)的公共點從左到右依次為,,所以,故,所以函數(shù)的關(guān)系式為.當(dāng)時,(1),即點的橫坐標(biāo)為1,為二函數(shù)的圖象的第二個公共點.故答案為:1.【點睛】本題考查三角函數(shù)關(guān)系式的恒等變換、正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運算能力及思維能力,屬于中檔題.16、31【解析】設(shè),可化為,得,,,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】
(1)利用均值不等式即可求證;(2)利用,結(jié)合,即可證明.【詳解】(1)∵,同理有,,∴.(2)∵,∴.同理有,.∴.【點睛】本題考查利用均值不等式證明不等式,涉及的妙用,屬綜合性中檔題.18、(1),;(2),,.【解析】
(1)把曲線的參數(shù)方程與曲線的極坐標(biāo)方程分別轉(zhuǎn)化為直角坐標(biāo)方程;(2)利用圖象求出三個點的極徑與極角.【詳解】解:(1)由消去參數(shù)得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標(biāo)方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點以及直線與圓的兩個交點,即為所求.∵,則,直線的傾斜角為,即點的極角為,所以點的極角為,點的極角為,所以三個點的極坐標(biāo)為,,.【點睛】本題考查圓的參數(shù)方程和普通方程的轉(zhuǎn)化、直線極坐標(biāo)方程和直角坐標(biāo)方程的轉(zhuǎn)化,消去參數(shù)方程中的參數(shù),就可把參數(shù)方程化為普通方程,消去參數(shù)的常用方法有:①代入消元法;②加減消元法;③乘除消元法;④三角恒等式消元法,極坐標(biāo)方程化為直角坐標(biāo)方程,只要將和換成和即可.19、(1);(2)1.【解析】
(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結(jié)合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB≠0,所以sinA=cosA,即:tanA=,因為A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a2=b2+c2-2bccosA,可得:25=b2+c2-bc=(b+c)2-3bc=(b+c)2-24,整理得(b+c)2=49,解得:b+c=7,所以△ABC的周長a+b+c=5+7=1.【點睛】本題主要考查了正弦定理,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.20、證明見解析【解析】
利用比較法進(jìn)行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因為,,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點睛】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安裝工程授權(quán)委托書格式樣本3篇
- 搬運裝卸合同3篇
- 安徽離婚協(xié)議書新版本3篇
- 房屋買賣合同法律條例3篇
- 文藝演出服裝道具租賃合同3篇
- 工業(yè)試驗設(shè)備安裝工程合同書3篇
- 房屋買賣建筑工程保險合同3篇
- 體育場館建設(shè)土石方工程施工合同
- 鐵路維修機(jī)械臺班施工合同
- 創(chuàng)意園區(qū)物業(yè)客服人員聘用合同
- 《中國傳統(tǒng)文化》課件模板(六套)
- 色卡-CBCC中國建筑標(biāo)準(zhǔn)色卡(千色卡1026色)
- 2024-2030年中國水產(chǎn)養(yǎng)殖行業(yè)發(fā)展形勢及投資風(fēng)險分析報告
- 建筑工程施工現(xiàn)場消防安全培訓(xùn)
- 泵站工程設(shè)計(共138張課件)
- 汽車保險與理賠課件 7.1認(rèn)識新能源汽車
- 中醫(yī)基礎(chǔ)理論-精氣學(xué)說
- 信息素養(yǎng):效率提升與終身學(xué)習(xí)的新引擎學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 浪潮銷售在線測評題
- 玻璃幕墻工程技術(shù)規(guī)范 JGJ102-2003知識培訓(xùn)
- 天津市河西區(qū)2024-2025學(xué)年數(shù)學(xué)四上期末考試模擬試題含解析
評論
0/150
提交評論