2024屆河南省滎陽市第二高級(jí)中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第1頁
2024屆河南省滎陽市第二高級(jí)中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第2頁
2024屆河南省滎陽市第二高級(jí)中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第3頁
2024屆河南省滎陽市第二高級(jí)中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第4頁
2024屆河南省滎陽市第二高級(jí)中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆河南省滎陽市第二高級(jí)中學(xué)高二數(shù)學(xué)第二學(xué)期期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.現(xiàn)有5人參加抽獎(jiǎng)活動(dòng),每人依次從裝有5張獎(jiǎng)票(其中3張為中獎(jiǎng)票)的箱子中不放回地隨機(jī)抽取一張,直到3張中獎(jiǎng)票都被抽出時(shí)活動(dòng)結(jié)束,則活動(dòng)恰好在第4人抽完后結(jié)束的概率為()A. B. C. D.2.設(shè)集合A={x|x>0},B={x|x2-5x-14<0},則A.{x|0<x<5} B.{x|2<x<7}C.{x|2<x<5} D.{x|0<x<7}3.已知點(diǎn)與拋物線的焦點(diǎn)的距離是,則的值是()A. B. C. D.4.投擲一枚均勻硬幣和一枚均勻骰子各一次,記“硬幣正面向上”為事件A,“骰子向上的點(diǎn)數(shù)是3”為事件B,則事件A,B中至少有一件發(fā)生的概率是()A.512 B.12 C.75.若是的必要不充分條件,則實(shí)數(shù)的取值范圍是()A.[-3,3] B.C. D.[-1,1]6.如果,那么的值是()A. B. C. D.7.已知,是兩條不同直線,,是兩個(gè)不同平面,則下列命題正確的是()(A)若,垂直于同一平面,則與平行(B)若,平行于同一平面,則與平行(C)若,不平行,則在內(nèi)不存在與平行的直線(D)若,不平行,則與不可能垂直于同一平面8.已知是可導(dǎo)函數(shù),且對于恒成立,則A. B.C. D.9.已知集合,,,則()A. B. C. D.10.隨機(jī)變量的分布列如下:-101若,則的值是()A. B. C. D.11.某班班會(huì)準(zhǔn)備從含甲、乙的7人中選取4人發(fā)言,要求甲、乙兩人至少有一人參加,且若甲、乙同時(shí)參加,則他們發(fā)言時(shí)順序不能相鄰,那么不同的發(fā)言順序有()A.720種 B.520種 C.360種 D.600種12.對于函教f(x)=ex(x-1)A.1是極大值點(diǎn) B.有1個(gè)極小值 C.1是極小值點(diǎn) D.有2個(gè)極大值二、填空題:本題共4小題,每小題5分,共20分。13.在等比數(shù)列中,已知,且與的等差中項(xiàng)為,則________14.二項(xiàng)式的展開式的常數(shù)項(xiàng)為________(用數(shù)字作答).15.三角形中,是邊上一點(diǎn),,,且三角形與三角形面積之比為,則__________.16.下表為生產(chǎn)產(chǎn)品過程中產(chǎn)量(噸)與相應(yīng)的生產(chǎn)耗能(噸)的幾組相對應(yīng)數(shù)據(jù):根據(jù)上表提供的數(shù)據(jù),得到關(guān)于的線性回歸方程為,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,側(cè)面為正方形,,是的中點(diǎn),是的中點(diǎn).(1)證明:平面平面;(2)若,求二面角的余弦值.18.(12分)已知、分別是橢圓左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為,若.求此橢圓的方程;直線與橢圓交于,兩點(diǎn),若弦的中點(diǎn)為求直線的方程.19.(12分)觀察下列等式:;;;;;(1)猜想第n(n∈N*)個(gè)等式;(2)用數(shù)學(xué)歸納法證明你的猜想.20.(12分)在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:,直線:.(1)求曲線和直線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線相交于兩點(diǎn),求的值.21.(12分)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ-3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ-3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查,試用所學(xué)知識(shí)說明上述監(jiān)控生產(chǎn)過程方法的合理性;附:若隨機(jī)變量Z服從正態(tài)分布N(μ,),則P(μ-3σ<Z<μ+3σ)=0.9974,,.22.(10分)已知函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R).(1)若函數(shù)f(x)的最小值是f(-1)=0,且c=1,F(xiàn)(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解題分析】試題分析:將5張獎(jiǎng)票不放回地依次取出共有種不同的取法,若活動(dòng)恰好在第四次抽獎(jiǎng)結(jié)束,則前三次共抽到2張中獎(jiǎng)票,第四次抽到最后一張中獎(jiǎng)票.共有種取法,∴考點(diǎn):古典概型及其概率計(jì)算公式2、D【解題分析】試題分析:由B={x|x2-5x-14<0}={x|-2<x<7},所以考點(diǎn):集合的運(yùn)算.3、B【解題分析】

利用拋物線的焦點(diǎn)坐標(biāo)和兩點(diǎn)間的距離公式,求解即可得出的值.【題目詳解】由題意可得拋物線的焦點(diǎn)為,因?yàn)辄c(diǎn)到拋物線的焦點(diǎn)的距離是5.所以解得.故選:B.【題目點(diǎn)撥】本題主要考查拋物線的標(biāo)準(zhǔn)方程和性質(zhì),還結(jié)合兩點(diǎn)間距離公式求解.4、C【解題分析】試題分析:由題意可知,事件A與事件B是相互獨(dú)立的,而事件A、B中至少有一件發(fā)生的事件包含AB、AB、AB,又P(A)=12,考點(diǎn):相互獨(dú)立事件概率的計(jì)算.5、D【解題分析】

根據(jù)充分、必要條件的定義,可知當(dāng)時(shí),恒成立,解一元二次不等式即可?!绢}目詳解】依題意可知,當(dāng)時(shí),恒成立,所以,解得,故選D?!绢}目點(diǎn)撥】本題主要考查充分、必要條件定義的應(yīng)用以及恒成立問題的解法。6、D【解題分析】

由誘導(dǎo)公式,可求得的值,再根據(jù)誘導(dǎo)公式化簡即可.【題目詳解】根據(jù)誘導(dǎo)公式,所以而所以選D【題目點(diǎn)撥】本題考查了誘導(dǎo)公式在三角函數(shù)式化簡中的應(yīng)用,屬于基礎(chǔ)題.7、D【解題分析】由,若,垂直于同一平面,則,可以相交、平行,故不正確;由,若,平行于同一平面,則,可以平行、重合、相交、異面,故不正確;由,若,不平行,但平面內(nèi)會(huì)存在平行于的直線,如平面中平行于,交線的直線;由項(xiàng),其逆否命題為“若與垂直于同一平面,則,平行”是真命題,故項(xiàng)正確.所以選D.考點(diǎn):1.直線、平面的垂直、平行判定定理以及性質(zhì)定理的應(yīng)用.8、D【解題分析】分析:構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷其單調(diào)性即可得出.詳解:已知是可導(dǎo)函數(shù),且對于恒成立,即恒成立,令,則,函數(shù)在R上單調(diào)遞減,,即,化為.故選:D.點(diǎn)睛:本題是知識(shí)點(diǎn)交匯的綜合題,考查綜合運(yùn)用函數(shù)思想解題的能力,恰當(dāng)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷單調(diào)性是解題的關(guān)鍵.9、D【解題分析】

按照補(bǔ)集、交集的定義,即可求解.【題目詳解】,,.

故選:D.【題目點(diǎn)撥】本題考查集合的混合計(jì)算,屬于基礎(chǔ)題.10、D【解題分析】由題設(shè)可得,,所以由隨機(jī)變量的方差公式可得,應(yīng)選答案D。11、D【解題分析】

分別計(jì)算甲乙只有一人參加、甲乙都參加兩種情況下的發(fā)言順序的種數(shù),根據(jù)分類加法計(jì)數(shù)原理加和求得結(jié)果.【題目詳解】甲、乙只有一人參加,則共有:C2甲、乙都參加,則共有:C5根據(jù)分類加法計(jì)數(shù)原理可得,共有:480+120=600種發(fā)言順序本題正確選項(xiàng):D【題目點(diǎn)撥】本題考查排列組合綜合應(yīng)用問題,關(guān)鍵是能夠通過分類的方式,分別計(jì)算兩類情況的種數(shù),屬于??碱}型.12、A【解題分析】

求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的極值點(diǎn),再逐項(xiàng)判斷即可.【題目詳解】f'當(dāng)f當(dāng)f'故選:A【題目點(diǎn)撥】本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、31【解題分析】

根據(jù),求出,又與的等差中項(xiàng)為,得到,所以可以求出,,即可求出【題目詳解】依題意,數(shù)列是等比數(shù)列,,即,所以,又與的等差中項(xiàng)為,所以,即,所以,所以,所以,故答案為:31【題目點(diǎn)撥】本題考查等比中項(xiàng)、等比數(shù)列的通項(xiàng)公式以及求和公式,需熟記公式。14、【解題分析】由已知得到展開式的通項(xiàng)為:,令r=12,得到常數(shù)項(xiàng)為;故答案為:18564.點(diǎn)睛:求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第r+1項(xiàng),再由特定項(xiàng)的特點(diǎn)求出r值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第r+1項(xiàng),由特定項(xiàng)得出r值,最后求出其參數(shù).15、【解題分析】分析:為的平分線,從而,根據(jù)余弦定理可得到,兩者結(jié)合可解出并求出,在中,由余弦定理可求出的長度.詳解:因?yàn)闉榈钠椒志€,故.又,整理得,所以,故.又,故.填.點(diǎn)睛:(1)在中,若為的平分線(為上一點(diǎn)),則有;(2)在解三角形中,我們有時(shí)需要找出不同三角形之間相關(guān)聯(lián)的邊或角,由它們溝通分散在不同三角形的幾何量.16、【解題分析】分析:首先求得樣本中心點(diǎn),然后利用回歸方程的性質(zhì)求得實(shí)數(shù)a的值即可.詳解:由題意可得:,,線性回歸方程過樣本中心點(diǎn),則:,解得:.點(diǎn)睛:本題主要考查線性回歸方程的性質(zhì)及其應(yīng)用等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解題分析】

(1)由題意可得平面即可得,再利用可以得到,由線面垂直判斷定理可得平面,然后根據(jù)面面垂直判斷定理可得結(jié)論;(2)先以點(diǎn)為原點(diǎn)建立空間直角坐標(biāo)系,設(shè),寫出相關(guān)點(diǎn)的坐標(biāo),再求出平面的法向量和平面的法向量,由數(shù)量積公式求出二面角的余弦值.【題目詳解】(1)∵三棱柱為直三棱柱,,∴平面,∴,∵是的中點(diǎn),是的中點(diǎn),∴,∴,∵,∴平面,∵平面,∴平面平面.(2)建立如圖所示空間直角坐標(biāo)系,如圖:設(shè),則,,,,,設(shè)平面的法向量為,則即,令得,又平面的法向量,∴,即二面角的余弦值為.【題目點(diǎn)撥】本題考查了面面垂直的證明,向量法求二面角的余弦值,考查了學(xué)生的邏輯推理以及計(jì)算能力,屬于一般題.18、;.【解題分析】

由已知條件得,由此求出橢圓方程;設(shè),,再結(jié)合弦的中點(diǎn)為,求直線的方程.【題目詳解】由題意得,所以,所以.設(shè),,,兩點(diǎn)在橢圓上,,,弦的中點(diǎn)為,,,,直線的方程為,即.【題目點(diǎn)撥】本題考查橢圓方程和直線方程的求法,屬于中檔題.19、(1);(2)(i)當(dāng)時(shí),等式顯然成立;(ii)見證明;【解題分析】

(1)猜想第個(gè)等式為.(2)先驗(yàn)證時(shí)等式成立,再假設(shè)等式成立,并利用這個(gè)假設(shè)證明當(dāng)時(shí)命題也成立.【題目詳解】(1)猜想第個(gè)等式為.(2)證明:①當(dāng)時(shí),左邊,右邊,故原等式成立;②設(shè)時(shí),有,則當(dāng)時(shí),故當(dāng)時(shí),命題也成立,由數(shù)學(xué)歸納法可以原等式成立.【題目點(diǎn)撥】數(shù)學(xué)歸納法可用于證明與自然數(shù)有關(guān)的命題,一般有2個(gè)基本的步驟:(1)歸納起點(diǎn)的證明即驗(yàn)證命題成立;(2)歸納證明:即設(shè)命題成立并證明時(shí)命題也成立,此處的證明必須利用假設(shè),最后給出一般結(jié)論.20、(1),;(2)17【解題分析】

(1)將直線的極坐標(biāo)方程先利用兩角和的正弦公式展開,然后利用代入直線和曲線的極坐標(biāo)方程,即可得出直線和曲線的普通方程;(2)由直線的普通方程得出該直線的傾斜角為,將直線的方程表示為參數(shù)方程(為參數(shù)),并將直線的參數(shù)方程與曲線的普通方程聯(lián)立,得到關(guān)于的二次方程,列出韋達(dá)定理,然后代入可得出答案.【題目詳解】(1)由曲線:得直角坐標(biāo)方程為,即的直角坐標(biāo)方程為:.由直線:展開的,即.(2)由(1)得直線的傾斜角為.所以的參數(shù)方程為(為參數(shù)),代入曲線得:.設(shè)交點(diǎn)所對應(yīng)的參數(shù)分別為,則.【題目點(diǎn)撥】本題考查極坐標(biāo)方程與普通方程之間的轉(zhuǎn)化,以及直線參數(shù)方程的幾何意義的應(yīng)用,對于直線與二次曲線的綜合問題,常用的方法就是將直線的參數(shù)方程與二次曲線的普通方程聯(lián)立,利用韋達(dá)定理以及的幾何意義求解.21、(1)P(X≥1)=0.0408,E(X)=0.0416(2)上述監(jiān)控生產(chǎn)過程的方法是合理的,詳見解析【解題分析】

(1)通過可求出,利用二項(xiàng)分布的期望公式計(jì)算可得結(jié)果.(2)由(1)知落在(μ-3σ,μ+3σ)之外為小概率事件可知該監(jiān)控生產(chǎn)過程方法合理.【題目詳解】解:(1)由題可知尺寸落在(μ-3σ,μ+3σ)之內(nèi)的概率為0.9974,則落在(μ-3σ,μ+3σ)之外的概率為1-0.9974=0.0026,因?yàn)椋訮(X≥1)=1-P(X=0)=0.0408,又因?yàn)閄~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)如果生產(chǎn)狀態(tài)正常,一個(gè)零件尺寸在之外的概率只有0.0026一天內(nèi)抽取的16個(gè)零件中,出現(xiàn)尺寸在之外的零件的概率只有0.0408,發(fā)生的概率很?。虼艘坏┌l(fā)生這種狀況,就有理由認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進(jìn)行檢查,可見上述監(jiān)控生產(chǎn)過程的方法是合理的.【題目點(diǎn)撥】本題考查對正態(tài)分布的理解以及二項(xiàng)分布的期望公式,是一道一般難度的概率綜合體.22、(1)8(2)[-2,0].【解題分析】

(1)根據(jù)函數(shù)f(x)最小值是f(﹣1)=0,且c=1,求出a,b,c的值,即可求F(2)+F(﹣2)的值;(2)由于函數(shù)f(x)=ax2+bx+c(a>0,b∈R,c∈R),且a=1,c=0,所以f(x)=x2+bx,進(jìn)而在滿足|f(x)|≤1在區(qū)間(0,1]恒成立時(shí),求出即可.【題目詳解】(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論