版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆浙江平陽中學數(shù)學高二下期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.非一線城市一線城市總計愿生452065不愿生132235總計5842100附表:0.0500.0100.0013.8416.63510.828由算得,,參照附表,得到的正確結(jié)論是()A.在犯錯誤的概率不超過的前提下,認為“生育意愿與城市級別有關(guān)”B.在犯錯誤的概率不超過的前提下,認為“生育意愿與城市級別無關(guān)”C.有以上的把握認為“生育意愿與城市級別有關(guān)”D.有以上的把握認為“生育意愿與城市級別無關(guān)”2.已知函數(shù),是函數(shù)的導(dǎo)函數(shù),則的圖象大致是()A. B.C. D.3.下列四個推理中,屬于類比推理的是()A.因為銅、鐵、鋁、金、銀等金屬能導(dǎo)電,所以一切金屬都能導(dǎo)電B.一切奇數(shù)都不能被2整除,是奇數(shù),所以不能被2整除C.在數(shù)列中,,可以計算出,所以推出D.若雙曲線的焦距是實軸長的2倍,則此雙曲線的離心率為2,類似的,若橢圓的焦距是長軸長的一半,則此橢圓的離心率為4.將曲線按變換后的曲線的參數(shù)方程為()A. B. C. D.5.定義在上的函數(shù)若滿足:①對任意、,都有;②對任意,都有,則稱函數(shù)為“中心捺函數(shù)”,其中點稱為函數(shù)的中心.已知函數(shù)是以為中心的“中心捺函數(shù)”,若滿足不等式,當時,的取值范圍為()A. B. C. D.6.在復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點在第四象限,對應(yīng)向量的模為3,且實部為,則復(fù)數(shù)等于()A. B. C. D.7.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},則(?RP)∩Q=()A. B. C. D.8.《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬;將四個面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐為鱉臑,平面,,,三棱錐的四個頂點都在球的球面上,則球的表面積為()A. B. C. D.9.的展開式中,的系數(shù)為()A.15 B.-15 C.60 D.-6010.定義在上的偶函數(shù)滿足:對任意的,,有,則().A. B.C. D.11.在復(fù)平面內(nèi),向量對應(yīng)的復(fù)數(shù)是,向量對應(yīng)的復(fù)數(shù)是,則向量對應(yīng)的復(fù)數(shù)對應(yīng)的復(fù)平面上的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.甲、乙、丙、丁、戊五名同學參加某種技術(shù)競賽,決出了第一名到第五名的五個名次,甲、乙去詢問成績,組織者對甲說:“很遺憾,你和乙都未拿到冠軍”;對乙說:“你當然不會是最差的”.從組織者的回答分析,這五個人的名次排列的不同情形種數(shù)共有()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則的值為_____________.14.若復(fù)數(shù)滿足,則__________.15.定積分的值等于________.16.已知集合,若實數(shù)滿足:對任意的,均有,則稱是集合的“可行數(shù)對”.以下集合中,不存在“可行數(shù)對”的是_________.①;②;③;④.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)求證:;(2)若不等式對一切實數(shù)恒成立,求實數(shù)的取值范圍.18.(12分)的展開式中若有常數(shù)項,求最小值及常數(shù)項.19.(12分)如圖,在矩形中,,,是的中點,以為折痕將向上折起,變?yōu)?,且平面平面.?)求證:;(2)求二面角的大?。?0.(12分)世界那么大,我想去看看,每年高考結(jié)束后,處于休養(yǎng)狀態(tài)的高中畢業(yè)生旅游動機強烈,旅游可支配收入日益增多,可見高中畢業(yè)生旅游是一個巨大的市場.為了解高中畢業(yè)生每年旅游消費支出(單位:百元)的情況,相關(guān)部門隨機抽取了某市的1000名畢業(yè)生進行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:組別[0,20)[20,40)[40,60)[60,80)[80,100)頻數(shù)22504502908(1)求所得樣本的中位數(shù)(精確到百元);(2)根據(jù)樣本數(shù)據(jù),可近似地認為學生的旅游費用支出服從正態(tài)分布,若該市共有高中畢業(yè)生35000人,試估計有多少位同學旅游費用支出在8100元以上;(3)已知樣本數(shù)據(jù)中旅游費用支出在[80,100)范圍內(nèi)的8名學生中有5名女生,3名男生,現(xiàn)想選其中3名學生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學期望.附:若,則,21.(12分)如圖,棱錐P-ABCD的地面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=22(1)求證:BD⊥平面PAC;(2)求二面角P-CD-B的大小;(3)求點C到平面PBD的距離.22.(10分)如圖,,是經(jīng)過小城的東西方向與南北方向的兩條公路,小城位于小城的東北方向,直線距離.現(xiàn)規(guī)劃經(jīng)過小城修建公路(,分別在與上),與,圍成三角形區(qū)域.(1)設(shè),,求三角形區(qū)域周長的函數(shù)解析式;(2)現(xiàn)計劃開發(fā)周長最短的三角形區(qū)域,求該開發(fā)區(qū)域的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】K2≈9.616>6.635,∴有99%以上的把握認為“生育意愿與城市級別有關(guān)”,本題選擇C選項.點睛:獨立性檢驗得出的結(jié)論是帶有概率性質(zhì)的,只能說結(jié)論成立的概率有多大,而不能完全肯定一個結(jié)論,因此才出現(xiàn)了臨界值表,在分析問題時一定要注意這點,不可對某個問題下確定性結(jié)論,否則就可能對統(tǒng)計計算的結(jié)果作出錯誤的解釋.2、A【解題分析】
首先求得導(dǎo)函數(shù)解析式,根據(jù)導(dǎo)函數(shù)的奇偶性可排除,再根據(jù),可排除,從而得到結(jié)果.【題目詳解】由題意得:為奇函數(shù),圖象關(guān)于原點對稱可排除又當時,,可排除本題正確選項:【題目點撥】此題考查函數(shù)圖象的識別,考查對函數(shù)基礎(chǔ)知識的把握程度以及數(shù)形結(jié)合的思維能力,關(guān)鍵是能夠利用奇偶性和特殊位置的符號來排除錯誤選項,屬于中檔題.3、D【解題分析】由推理的定義可得A,C為歸納推理,B為演繹推理,D為類比推理.本題選擇D選項.點睛:一是合情推理包括歸納推理和類比推理,所得到的結(jié)論都不一定正確,其結(jié)論的正確性是需要證明的.二是在進行類比推理時,要盡量從本質(zhì)上去類比,不要被表面現(xiàn)象所迷惑;否則只抓住一點表面現(xiàn)象甚至假象就去類比,就會犯機械類比的錯誤.4、D【解題分析】由變換:可得:,代入曲線可得:,即為:令(θ為參數(shù))即可得出參數(shù)方程.故選D.5、C【解題分析】
先結(jié)合題中條件得出函數(shù)為減函數(shù)且為奇函數(shù),由,可得出,化簡后得出,結(jié)合可求出,再由結(jié)合不等式的性質(zhì)得出的取值范圍.【題目詳解】由知此函數(shù)為減函數(shù).由函數(shù)是關(guān)于的“中心捺函數(shù)”,知曲線關(guān)于點對稱,故曲線關(guān)于原點對稱,故函數(shù)為奇函數(shù),且函數(shù)在上遞減,于是得,.,.則當時,令m=x,y=n則:問題等價于點(x,y)滿足區(qū)域,如圖陰影部分,由線性規(guī)劃知識可知為(x,y)與(0,0)連線的斜率,由圖可得,,故選:C.【題目點撥】本題考查代數(shù)式的取值范圍的求解,解題的關(guān)鍵就是分析出函數(shù)的單調(diào)性與奇偶性,利用函數(shù)的奇偶性與單調(diào)性將題中的不等關(guān)系進行轉(zhuǎn)化,應(yīng)用到線性規(guī)劃的知識,考查分析問題和解決問題的能力,屬于難題.6、C【解題分析】
設(shè)復(fù)數(shù),根據(jù)向量的模為3列方程求解即可.【題目詳解】根據(jù)題意,復(fù)平面內(nèi)復(fù)數(shù)z對應(yīng)的點在第四象限,對應(yīng)向量的模為3,且實部為.設(shè)復(fù)數(shù),∵,∴,復(fù)數(shù).故.故選:C.【題目點撥】本題考查復(fù)數(shù)的代數(shù)表示及模的運算,是基礎(chǔ)題.7、C【解題分析】
先化簡集合A,再求,進而求.【題目詳解】x(x-2)≥0,解得:x≤0或x≥2,即P=(-∞,0]∪[2,+∞)由題意得,=(0,2),∴,故選C.【題目點撥】本題考查的是有關(guān)集合的運算的問題,在解題的過程中,要先化簡集合,明確集合的運算法則,進而求得結(jié)果.8、C【解題分析】由題意得為球的直徑,而,即球的半徑;所以球的表面積.本題選擇C選項.點睛:與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.9、C【解題分析】試題分析:依題意有,故系數(shù)為.考點:二項式.10、A【解題分析】由對任意x1,x2[0,+∞)(x1≠x2),有<0,得f(x)在[0,+∞)上單獨遞減,所以,選A.點睛:利用函數(shù)性質(zhì)比較兩個函數(shù)值或兩個自變量的大小,首先根據(jù)函數(shù)的性質(zhì)構(gòu)造某個函數(shù),然后根據(jù)函數(shù)的奇偶性轉(zhuǎn)化為單調(diào)區(qū)間上函數(shù)值,最后根據(jù)單調(diào)性比較大小,要注意轉(zhuǎn)化在定義域內(nèi)進行11、C【解題分析】
先求,再確定對應(yīng)點所在象限【題目詳解】,對應(yīng)點為,在第三象限,選C.【題目點撥】本題考查向量線性運算以及復(fù)數(shù)幾何意義,考查基本分析求解能力,屬基礎(chǔ)題.12、D【解題分析】分析:先排乙,再排甲,最后排剩余三人.詳解:先排乙,有種,再排甲,有種,最后排剩余三人,有種因此共有,選D.點睛:求解排列、組合問題常用的解題方法:(1)元素相鄰的排列問題——“捆邦法”;(2)元素相間的排列問題——“插空法”;(3)元素有順序限制的排列問題——“除序法”;(4)帶有“含”與“不含”“至多”“至少”的排列組合問題——“間接法”;(5)“在”與“不在”問題——“分類法”.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】
用賦值法,在所給的等式中,分別令和1,即可求出對應(yīng)的值.【題目詳解】在中,令,得,即;令,得,.故答案為:1.【題目點撥】本題考查二項式定理展開式的系數(shù)問題,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意賦值法的應(yīng)用.14、1【解題分析】
設(shè),,代入方程利用復(fù)數(shù)相等即可求解,求模即可.【題目詳解】設(shè),,則,整理得:解得,所以,故答案為1【題目點撥】本題主要考查了復(fù)數(shù)的概念,復(fù)數(shù)的模,復(fù)數(shù)方程,屬于中檔題.15、ln1【解題分析】
直接根據(jù)定積分的計算法則計算即可.【題目詳解】,故答案為:ln1.【題目點撥】本題考查了定積分的計算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.16、②③【解題分析】
由題意,,問題轉(zhuǎn)化為與選項有交點,代入驗證,可得結(jié)論.【題目詳解】由題意對任意的,均有,則,即與選項有交點,對①,與有交點,滿足;對②,的圖形在的內(nèi)部,無交點,不滿足;對③,的圖形在的外部,無交點,不滿足;對④,與有交點,滿足;故答案為②③.【題目點撥】本題考查曲線與方程的定義的應(yīng)用,考查了理解與轉(zhuǎn)化能力,將問題轉(zhuǎn)化為與選項有交點是關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)證明見解析;(Ⅱ).【解題分析】試題分析:(1)由題意結(jié)合柯西不等式的結(jié)論即可證得題中的結(jié)論;(2)結(jié)合(1)的結(jié)論可得絕對值不等式,零點分段求解絕對值不等式可得實數(shù)的取值范圍為.試題解析:(Ⅰ)證明:由柯西不等式得,,的取值范圍是.(Ⅱ)由柯西不等式得.若不等式對一切實數(shù)恒成立,則,其解集為,即實數(shù)的取值范圍為.18、的最小值為;常數(shù)項為.【解題分析】
求出二項式展開式的通項,由可求出的最小值,并求出對應(yīng)的值,代入通項即可得出所求的常數(shù)項.【題目詳解】二項式展開式的通項為,令,得,所以,的最小值為,此時.此時,展開式中的常數(shù)項為.【題目點撥】本題考查利用二項式定理求常數(shù)項,一般利用的指數(shù)為零求出參數(shù)的值,考查運算求解能力,屬于中等題.19、(1)見證明;(2)90°【解題分析】
(1)利用垂直于所在的平面,從而證得;(2)找到三條兩兩互相垂直的直線,建立空間直角坐標系,寫出點的坐標,再分別求出兩個面的法向量,,最后求法向量的夾角的余弦值,進而得到二面角的大小.【題目詳解】(1)證明:∵,,∴,∴,∵,,,∴,,∴.(2)如圖建立空間直角坐標系,則、、、、,從而,,.設(shè)為平面的法向量,則令,所以,設(shè)為平面的法向量,則,令,所以,因此,,有,即,故二面角的大小為.【題目點撥】證明線線垂直的一般思路:證明一條直線垂直于另一條直線所在的平面,所以根據(jù)題目所給的圖形,觀察并確定哪一條線垂直于哪一條線所在的平面,是證明的關(guān)鍵.20、(1)51;(2)805;(3)見解析【解題分析】試題分析:(1)根據(jù)中位數(shù)定義列式解得中位數(shù),(2)由正態(tài)分布得旅游費用支出在元以上的概率為,再根據(jù)頻數(shù)等于總數(shù)與頻率乘積得人數(shù).(3)先確定隨機變量取法,再利用組合數(shù)分別求對應(yīng)概率,列表可得分布列,最后根據(jù)數(shù)學期望公式求期望.試題解析:(1)設(shè)樣本的中位數(shù)為,則,解得,所得樣本中位數(shù)為(百元).(2),,,旅游費用支出在元以上的概率為,,估計有位同學旅游費用支出在元以上.(3)的可能取值為,,,,,,,,∴的分布列為.21、(1)見解析;(2)θ=45°;(3)23【解題分析】
(1)先證明ABCD為正方形,可得BD⊥AC,由PA⊥平面ABCD,BD?平面ABCD,可得BD⊥PA,利用線面垂直的判定定理可得結(jié)果;(2)以AB,AD,AP為x,y,z軸建立空間直角坐標系,根據(jù)向量垂直數(shù)量積為零,列方程組求出平面PCD的法向量,結(jié)合(0,0,2)為平面ABCD的法向量,利用空間向量夾角余弦公式求出兩個向量的夾角余弦,進而轉(zhuǎn)化為二面角P-CD-B的平面角即可;(3)求出平面PBD的法向量,再求出平面的斜線PC所在的向量PC,然后求出PC【題目詳解】(1)解法一:在RtΔBAD中,AD=2,BD=22∴AB=2,∴ABCD為正方形,因此BD⊥AC,∵PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA.又∵PA∩AC=A,∴BD⊥平面PAC.解法二:以AB,AD,AP為x,y,z軸建立如圖所示的空間直角坐標系,則A0,0,0,D0,2在RtΔBAD中,AD=2,BD=22∴AB=2,∴B2,0,0,∴AP=(0,0,2),AC∵BD?AP=0即BD⊥AP,BD⊥AC.又AP∩AC=A,∴BD⊥平面PAC.(2)解法一:由PA⊥平面ABCD,知AD為PD在平面ABCD上的射影.又CD⊥AD,∴CD⊥PD,∴∠PDA為二面角P-CD-B的平面角.又∵PA=AD,∴∠PDA=45°.解法二:由1題得PD=0,2,-2設(shè)平面PCD的法向量為n1=x,y,z,則n即0+2y-2z=0-2x+0+0=0,∴x=0故平面PCD的法向量可取為n1∵PA⊥平面ABCD,∴AP=(0,0,2)設(shè)二面角P-CD-B的大小為θ,依題意可得cosθ=∴θ=45°.(3)解法一:∵PA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學計算機協(xié)會工作計劃
- 2025年幼兒園教研工作計劃例文
- 部門工作計劃范文
- 數(shù)學老師課堂教學任務(wù)計劃
- 2025德育工作計劃小學
- 小學第一學期班主任的教學工作計劃范文
- 職高班主任年度工作計劃
- 《蝸桿傳動改》課件
- 《母親的教誨胡適》課件
- 2020版 滬教版 高中音樂 必修1 音樂鑒賞 上篇《第四單元 黃鐘大呂》大單元整體教學設(shè)計2020課標
- 做好計劃管理-杜絕虛假繁忙-陳春花老師
- 船舶加油作業(yè)安全操作規(guī)程
- 重慶市兩江新區(qū)八年級(上)期末語文試卷(含解析)
- 七人學生小品《如此課堂》劇本臺詞手稿
- 出境竹木草制品公司不合格產(chǎn)品召回制度
- POWERPOINT教學案例優(yōu)秀6篇
- RFJ05-2009-DQ人民防空工程電氣大樣圖集
- 建筑物理課后習題參考
- 部編版道德與法治三年級下冊第一單元《我和我的同伴》大單元作業(yè)設(shè)計案例
- 2023屆四省聯(lián)考“諺語看似矛盾”的作文講評+課件
- 研一考試文件內(nèi)科學進展習題
評論
0/150
提交評論