沈陽外國語學校2023年高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第1頁
沈陽外國語學校2023年高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第2頁
沈陽外國語學校2023年高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第3頁
沈陽外國語學校2023年高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第4頁
沈陽外國語學校2023年高一數(shù)學第一學期期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

沈陽外國語學校2023年高一數(shù)學第一學期期末學業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)f(x)=在[—π,π]的圖像大致為A. B.C. D.2.已知函數(shù),若關于x的方程恰有兩個不同的實數(shù)解,則實數(shù)m的取值范圍是()A. B.C. D.3.若,則是()A.第一象限或第三象限角 B.第二象限或第四象限角C.第三象限或第四象限角 D.第二象限或第三象限角4.已知是兩條不同直線,是三個不同平面,下列命題中正確的是()A.若則 B.若則C.若則 D.若則5.函數(shù)的定義域為()A.R B.C. D.6.已知,且點在線段的延長線上,,則點的坐標為()A. B.C. D.7.小敏打開計算機時,忘記了開機密碼的前兩位,只記得第一位是中的一個字母,第二位是1,2,3,4,5中的一個數(shù)字,則小敏輸入一次密碼能夠成功開機的概率是A. B.C. D.8.若,則關于的不等式的解集是()A. B.或C.或 D.9.已知全集,集合,,則()A. B.C. D.10.已知,,,則a,b,c大小關系為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的單調遞增區(qū)間為________________.12.命題“”的否定是______.13.設是第三象限的角,則的終邊在第_________象限.14.已知定義在上的偶函數(shù)在上遞減,且,則不等式的解集為__________15.設,,則的取值范圍是______.16.已知函數(shù),那么的表達式是___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖所示,在四棱錐P-ABCD中,底面是邊長為a的正方形,側棱PD=a,PA=PC=a,(1)求證:PD⊥平面ABCD;(2)求證:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值18.已知不過第二象限的直線l:ax-y-4=0與圓x2+(y-1)2=5相切(1)求直線l的方程;(2)若直線l1過點(3,-1)且與直線l平行,直線l2與直線l1關于直線y=1對稱,求直線l2的方程19.已知函數(shù)(1)求的值;(2)若對任意的,都有求實數(shù)的取值范圍.20.已知正方體,(1)證明:平面;(2)求異面直線與所成的角21.求滿足下列條件的圓的方程:(1)經(jīng)過點,,圓心在軸上;(2)經(jīng)過直線與的交點,圓心為點.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】先判斷函數(shù)的奇偶性,得是奇函數(shù),排除A,再注意到選項的區(qū)別,利用特殊值得正確答案【詳解】由,得是奇函數(shù),其圖象關于原點對稱.又.故選D【點睛】本題考查函數(shù)的性質與圖象,滲透了邏輯推理、直觀想象和數(shù)學運算素養(yǎng).采取性質法或賦值法,利用數(shù)形結合思想解題2、D【解析】根據(jù)題意,函數(shù)與圖像有兩個交點,進而作出函數(shù)圖像,數(shù)形結合求解即可.【詳解】解:因為關于x的方程恰有兩個不同的實數(shù)解,所以函數(shù)與圖像有兩個交點,作出函數(shù)圖像,如圖,所以時,函數(shù)與圖像有兩個交點,所以實數(shù)m的取值范圍是故選:D3、D【解析】由已知可得即可判斷.【詳解】,即,則且,是第二象限或第三象限角.故選:D.4、D【解析】A項,可能相交或異面,當時,存在,,故A項錯誤;B項,可能相交或垂直,當

時,存在,,故B項錯誤;C項,可能相交或垂直,當

時,存在,,故C項錯誤;D項,垂直于同一平面的兩條直線相互平行,故D項正確,故選D.本題主要考查的是對線,面關系的理解以及對空間的想象能力.考點:直線與平面、平面與平面平行的判定與性質;直線與平面、平面與平面垂直的判定與性質.5、B【解析】要使函數(shù)有意義,則需要滿足即可.【詳解】要使函數(shù)有意義,則需要滿足所以的定義域為,故選:B6、C【解析】設,根據(jù)題意得出,由建立方程組求解即可.【詳解】設,因為,所以即故選:C【點睛】本題主要考查了由向量共線求參數(shù),屬于基礎題.7、C【解析】開機密碼的可能有,,共15種可能,所以小敏輸入一次密碼能夠成功開機的概率是,故選C【考點】古典概型【解題反思】對古典概型必須明確兩點:①對于每個隨機試驗來說,試驗中所有可能出現(xiàn)基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等.只有在同時滿足①、②的條件下,運用的古典概型計算公式(其中n是基本事件的總數(shù),m是事件A包含的基本事件的個數(shù))得出的結果才是正確的8、D【解析】判斷出,再利用一元二次不等式的解法即可求解.【詳解】因,所以,即.所以,解得.故選:D【點睛】本題考查了一元二次不等式的解法,考查了基本運算求解能力,屬于簡單題.9、D【解析】先求得全集U和,根據(jù)補集運算的概念,即可得答案.【詳解】由題意得全集,,所以.故選:D10、B【解析】利用對數(shù)函數(shù)的單調性證明即得解.【詳解】解:,,所以故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】函數(shù)由,復合而成,求出函數(shù)的定義域,根據(jù)復合函數(shù)的單調性即可得結果.【詳解】函數(shù)由,復合而成,單調遞減令,解得或,即函數(shù)的定義域為,由二次函數(shù)的性質知在是減函數(shù),在上是增函數(shù),由復合函數(shù)的單調性判斷知函數(shù)的單調遞增區(qū)間,故答案為.【點睛】本題考查用復合函數(shù)的單調性求單調區(qū)間,此題外層是一對數(shù)函數(shù),故要先解出函數(shù)的定義域,在定義域上研究函數(shù)的單調區(qū)間,這是本題易失分點,切記!12、【解析】根據(jù)全稱命題的否定是特稱命題,寫出結論.【詳解】原命題是全稱命題,故其否定是特稱命題,所以原命題的否定是“”.【點睛】本小題主要考查全稱命題的否定是特稱命題,除了形式上的否定外,還要注意否定結論,屬于基礎題.13、二或四【解析】根據(jù)是第三象限角,得到,,再得到,,然后討論的奇偶可得答案.【詳解】因為是第三象限角,所以,,所以,,當為偶數(shù)時,為第二象限角,當為奇數(shù)時,為第四象限角.故答案為:二或四.14、【解析】因為,而為偶函數(shù),故,故原不等式等價于,也就是,所以即,填點睛:對于偶函數(shù),有.解題時注意利用這個性質把未知區(qū)間的性質問題轉化為已知區(qū)間上的性質問題去處理15、【解析】由已知求得,然后應用誘導公式把求值式化為一個角的一個三角函數(shù)形式,結合正弦函數(shù)性質求得范圍【詳解】,,所以,所以,,,,故答案為:16、【解析】先用換元法求出,進而求出的表達式.【詳解】,令,則,故,故,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析(3)【解析】(1)證明:∵PD=a,DC=a,PC=a,∴PC2=PD2+DC2,∴PD⊥DC.同理,PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD(2)證明:由(1)知PD⊥平面ABCD,∴PD⊥AC,又四邊形ABCD是正方形,∴AC⊥BD,又BD∩PD=D,∴AC⊥平面PDB.又AC?平面PAC,∴平面PAC⊥平面PBD(3)設AC∩BD=O,連接PO.由PA=PC,知PO⊥AC.又DO⊥AC,故∠POD為二面角P-AC-D的平面角.易知OD=.在Rt△PDO中,tan∠POD=.考點:平面與平面垂直的判定.18、(1)2x-y-4=0(2)2x+y-9=0【解析】(1)利用直線l與圓x2+(y-1)2=5相切,,結合直線l不過第二象限,求出a,即可求直線l的方程;(2)直線l1的方程為2x-y+b=0,直線l1過點(3,-1),求出b,即可求出直線l1的方程;利用直線l2與l1關于y=1對稱,求出直線的斜率,即可求直線l2的方程【詳解】(1)∵直線l與圓x2+(y-1)2=5相切,∴,∵直線l不過第二象限,∴a=2,∴直線l的方程為2x-y-4=0;(2)∵直線l1過點(3,-1)且與直線l平行,∴直線l1方程為2x-y+b=0,∵直線l1過點(3,-1),∴b=-7,則直線l1的方程為2x-y-7=0,∵直線l2與l1關于y=1對稱,∴直線l2的斜率為-2,且過點(4,1),∴直線l2的斜率為y-1=-2(x-4),即化簡得2x+y-9=0【點睛】本題考查直線方程,考查直線與直線的位置關系,屬于中檔題19、(1)(2)【解析】(1)代入后,利用余弦的二倍角公式進行求解;(2)先化簡得到,進而求出的最大值,求出實數(shù)的取值范圍.【小問1詳解】【小問2詳解】因為x∈,所以2x+∈,所以當2x+=,即x=時,取得最大值.所以對任意x∈,等價于≤c.故實數(shù)c的取值范圍是.20、(1)證明見解析;(2)【解析】(1)證明,再根據(jù)線面平行的判定定理即可證明結論;(2)即為異面直線與所成的角,求出即可【詳解】(1)證:在正方體中,,且,∴四邊形為平行四邊形,∴,又∵平面,平面;∴平面;(2)解:∵,∴即為異面直線與所成的角,設正方體的邊長為,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論