版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
天一大聯(lián)考2023年數(shù)學高一上期末復習檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知集合A={x|-1≤x≤2},B={0,1,2,3},則A∩B=()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}2.函數(shù)在區(qū)間上的最大值為2,則實數(shù)的值為A.1或 B.C. D.1或3.下列關于函數(shù)的圖象中,可以直觀判斷方程在上有解的是A. B.C. D.4.已知直線,直線,則與之間的距離為()A. B.C. D.5.用反證法證明命題:“已知.,若不能被7整除,則與都不能被7整除”時,假設的內(nèi)容應為A.,都能被7整除 B.,不能被7整除C.,至少有一個能被7整除 D.,至多有一個能被7整除6.下列函數(shù)中,在R上為增函數(shù)的是()A.y=2-xC.y=2x7.投壺是從先秦延續(xù)至清末的漢民族傳統(tǒng)禮儀和宴飲游戲,在春秋戰(zhàn)國時期較為盛行.如圖為一幅唐朝的投壺圖,假設甲、乙、丙是唐朝的三位投壺游戲參與者,且甲、乙、丙每次投壺時,投中與不投中是等可能的.若甲、乙、丙各投壺1次,則這3人中至多有1人投中的概率為()A. B.C. D.8.若向量滿足:則A.2 B.C.1 D.9.方程的解所在的區(qū)間是A. B.C. D.10.的外接圓的圓心為O,半徑為1,若,且,則的面積為()A. B.C. D.111.已知函數(shù)的圖像中相鄰兩條對稱軸之間的距離為,當時,函數(shù)取到最大值,則A.函數(shù)的最小正周期為 B.函數(shù)的圖像關于對稱C.函數(shù)的圖像關于對稱 D.函數(shù)在上單調(diào)遞減12.設且則()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知函數(shù),若,則________.14.函數(shù)的最大值為___________.15.已知一容器中有兩種菌,且在任何時刻兩種菌的個數(shù)乘積為定值,為了簡單起見,科學家用來記錄菌個數(shù)的資料,其中為菌的個數(shù),現(xiàn)有以下幾種說法:①;②若今天值比昨天的值增加1,則今天的A菌個數(shù)比昨天的A菌個數(shù)多10;③假設科學家將B菌的個數(shù)控制為5萬,則此時(注:)則正確的說法為________.(寫出所有正確說法的序號)16.已知角的終邊經(jīng)過點,則的值是______.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.在三棱錐中,和是邊長為的等邊三角形,,分別是的中點.(1)求證:平面;(2)求證:平面;(3)求三棱錐的體積.18.已知,求下列各式的值.(1);(2).19.已知函數(shù)的最小值為1.(1)求的值;(2)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間.20.閩東傳承著中國博大精深的茶文化,講究茶葉茶水的口感,茶水的口感與茶葉類型和水的溫度有關.如果剛泡好的茶水溫度是,空氣的溫度是,那么分鐘后茶水的溫度(單位:)可由公式求得,其中是一個物體與空氣的接觸狀況而定的正常數(shù).現(xiàn)有某種剛泡好的紅茶水溫度是,放在的空氣中自然冷卻,10分鐘以后茶水的溫度是(1)求k的值;(2)經(jīng)驗表明,溫度為的該紅茶水放在的空氣中自然冷卻至時飲用,可以產(chǎn)生最佳口感,那么,大約需要多長時間才能達到最佳飲用口感?(結果精確到,附:參考值)21.證明:函數(shù)是奇函數(shù).22.已知函數(shù)(1)求的定義域;(2)判斷的奇偶性,并說明理由;(3)設,證明:
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、C【解析】利用交集定義直接求解【詳解】∵集合A={x|-1≤x≤2},B={0,1,2,3},∴A∩B={0,1,2}故選:C2、A【解析】化簡可得,再根據(jù)二次函數(shù)的對稱軸與區(qū)間的位置關系,結合正弦函數(shù)的值域分情況討論即可【詳解】因,令,故,當時,在單調(diào)遞減所以,此時,符合要求;當時,在單調(diào)遞增,在單調(diào)遞減故,解得舍去當時,在單調(diào)遞增所以,解得,符合要求;綜上可知或故選:A.3、D【解析】方程f(x)-2=0在(-∞,0)上有解,∴函數(shù)y=f(x)與y=2在(-∞,0)上有交點,分別觀察直線y=2與函數(shù)f(x)的圖象在(-∞,0)上交點的情況,選項A,B,C無交點,D有交點,故選D點睛:這個題目考查了方程有解的問題,把函數(shù)的零點轉化為方程的解,再把方程的解轉化為函數(shù)圖象的交點,特別是利用分離參數(shù)法轉化為動直線與函數(shù)圖象交點問題,要求圖像的畫法要準確4、D【解析】利用兩平行線間的距離公式即可求解.【詳解】直線的方程可化為,則與之間的距離故選:D5、C【解析】根據(jù)用反證法證明數(shù)學命題的步驟和方法,應先假設命題的否定成立而命題“與都不能被7整除”的否定為“至少有一個能被7整除”,故選C【點睛】本題主要考查用反證法證明數(shù)學命題,把要證結論進行否定,得到要證的結論的反面,是解題的關鍵.6、C【解析】對于A,y=2-x=12x,在R上是減函數(shù);對于B,y=x2在-∞,0上是減函數(shù),在0,+∞上是增函數(shù);對于C,當【詳解】解:對于A,y=2-x=12對于B,y=x2在-∞,0對于C,當x≥0時,y=2x是增函數(shù),當x<0時,y=x是增函數(shù),所以函數(shù)fx對于D,y=lgx的定義域是0,+∞故選:C.7、C【解析】根據(jù)題意,列出所有可能,結合古典概率,即可求解.【詳解】甲、乙、丙3人投中與否的所有情況為:(中,中,中),(中,中,不中),(中,不中,中),(中,不中,不中),(不中,中,中),(不中,中,不中),(不中,不中,中),(不中,不中,不中),共8種,其中至多有1人投中的有4種,故所求概率為故選:C.8、B【解析】由題意易知:即,,即.故選B.考點:向量的數(shù)量積的應用.9、C【解析】根據(jù)零點存在性定理判定即可.【詳解】設,,根據(jù)零點存在性定理可知方程的解所在的區(qū)間是.故選:C【點睛】本題主要考查了根據(jù)零點存在性定理判斷零點所在的區(qū)間,屬于基礎題.10、B【解析】由,利用向量加法的幾何意義得出△ABC是以A為直角的直角三角形,又|,從而可求|AC|,|AB|的值,利用三角形面積公式即可得解【詳解】由于,由向量加法的幾何意義,O為邊BC中點,∵△ABC的外接圓的圓心為O,半徑為1,∴三角形應該是以BC邊為斜邊的直角三角形,∠BAC=,斜邊BC=2,又∵∴|AC|=1,|AB|=,∴S△ABC=,故選B.【點睛】本題主要考查了平面向量及應用,三角形面積的求法,屬于基礎題11、D【解析】由相鄰對稱軸之間的距離,得函數(shù)的最小正周期,求得,再根據(jù)當時,函數(shù)取到最大值求得,對函數(shù)的性質(zhì)進行判斷,可選出正確選項【詳解】因為函數(shù)的圖像中相鄰兩條對稱軸之間的距離為,所以,函數(shù)的最小正周期,所以,又因為當時,函數(shù)取到最大值,所以,,因為,所以,,函數(shù)最小正周期,A錯誤;函數(shù)圖像的對稱軸方程為,,B錯誤;函數(shù)圖像的對稱中心為,,C錯誤;所以選擇D【點睛】由的圖像求函數(shù)的解析式時,由函數(shù)的最大值和最小值求得,由函數(shù)的周期求得,代值進函數(shù)解析式可求得的值12、C【解析】試題分析:由已知得,,去分母得,,所以,又因為,,所以,即,選考點:同角間的三角函數(shù)關系,兩角和與差的正弦公式二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】根據(jù)題意,將分段函數(shù)分類討論計算可得答案【詳解】解:當時,,即,解得,滿足題意;當時,,即,解得,不滿足題意故.故答案為.【點睛】本題考查分段函數(shù)的計算,屬于基礎題14、【解析】根據(jù)二次函數(shù)的性質(zhì),結合給定的區(qū)間求最大值即可.【詳解】由,則開口向上且對稱軸為,又,∴,,故函數(shù)最大值為.故答案為:.15、③【解析】對于①通過取特殊值即可排除,對于②③直接帶入計算即可.【詳解】當nA=1時,PA=0,故①錯誤;若PA=1,則nA=10,若PA=2,則nA=100,故②錯誤;B菌的個數(shù)為nB=5×104,∴,∴.又∵,∴故選③16、##【解析】根據(jù)三角函數(shù)定義得到,,進而得到答案.【詳解】角的終邊經(jīng)過點,,,.故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)證明見解析;(2)證明見解析;(3).【解析】(1)欲證線面平行,則需證直線與平面內(nèi)的一條直線平行.由題可證,則證得平面;(2)欲證線面垂直,則需證直線垂直于平面內(nèi)的兩條相交直線.連接,可證得,從而可證得平面;(3)由(2)可知,為三棱錐的高,平面為三棱錐的底面,應用椎體體積公式即可求解.【詳解】(1)證明:分別是的中點,又平面,平面平面(2)如圖,連接,,是的中點,同理又,又平面(3)由(2)可知,為三棱錐的高,且,.【點睛】本題考查線面平行,線面垂直的判定定理以及椎體體積公式的應用,考查空間想象能力與思維能力,屬中檔題.18、(1)2(2)【解析】(1)依據(jù)三角函數(shù)誘導公式化簡后去求解即可解決;(2)轉化為求三角函數(shù)齊次式的值即可解決.【小問1詳解】原式.【小問2詳解】原式.19、(1)3;(2)【解析】⑴將最小值代入函數(shù)中求解即可得到的值;⑵根據(jù)正弦函數(shù)的圖象和性質(zhì)求得函數(shù)的最小正周期和單調(diào)遞增區(qū)間解析:(1)由已知得,解得.(2)的最小正周期為.由,解得,.所以的遞增區(qū)間是.20、(1)(2)【解析】(1)由解方程可得解;(2)令,解方程可得解.【小問1詳解】由題意可知,,其中,所以,解得小問2詳解】設剛泡好的茶水大約需要放置分鐘才能達到最佳飲用口感,由題意可知,,令,所以,,,所以,所以剛泡好的茶水大約需要放置分鐘才能達到最佳飲用口感.21、證明見解析【解析】由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 動漫的課件教學課件
- 2024年度版權許可合同:影視作品信息網(wǎng)絡傳播
- 2024年度房屋買賣合同標的房屋描述及交易細節(jié)
- 瓜子效應課件教學課件
- 2024年度特許加盟合同
- 2024年度二手挖掘機買賣合同的法律適用
- 2024個人向法定代表人借款合同范本示例
- 2024年度展覽設施安裝合同
- 2024年家政工派遣與雇傭合同
- 2024年廣告合作與代理合同
- 污水源熱泵方案
- QCT 1037-2016 道路車輛用高壓電纜
- 現(xiàn)代交換原理與通信網(wǎng)技
- 全科醫(yī)生臨床常見病門急診病歷模板(范例)
- GH/T 1421-2023野生食用菌保育促繁技術規(guī)程塊菌(松露)
- 商業(yè)綜合體停車收費管理詳細規(guī)定
- 健康管理專業(yè)職業(yè)生涯規(guī)劃書
- 滑膜炎的知識宣教
- 第23課《孟子三章富貴不能淫》課件(共22張)語文八年級上冊
- 合理用藥軟件系統(tǒng)建設方案
- Unit4Whatcanyoudo-PartBLetslearn(課件)人教PEP版英語五年級上冊
評論
0/150
提交評論