版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省皖北協(xié)作區(qū)2024屆數(shù)學(xué)高一下期末學(xué)業(yè)質(zhì)量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知等比數(shù)列中,各項(xiàng)都是正數(shù),且成等差數(shù)列,則等于()A. B. C. D.2.已知函數(shù)和的定義域都是,則它們的圖像圍成的區(qū)域面積是()A. B. C. D.3.某班20名學(xué)生的期末考試成績用如圖莖葉圖表示,執(zhí)行如圖程序框圖,若輸入的()分別為這20名學(xué)生的考試成績,則輸出的結(jié)果為()A.11 B.10 C.9 D.84.已知不等式的解集為,則不等式的解集為()A. B.C. D.5.在中,角,,所對的邊分別為,,,若,,,則()A. B. C. D.6.己知函數(shù)的最小值為,最大值為,若,則數(shù)列是()A.公差不為0的等差數(shù)列 B.公比不為1的等比數(shù)列C.常數(shù)數(shù)列 D.以上都不對7.在等差數(shù)列中,若,則()A.45 B.75 C.180 D.3208.若實(shí)數(shù)滿足約束條件,則的最大值是()A. B.0 C.1 D.29.若,且,則“”是“函數(shù)有零點(diǎn)”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.將一個(gè)總體分為甲、乙、丙三層,其個(gè)體數(shù)之比為,若用分層抽樣的方法抽取容量為200的樣本,則應(yīng)從丙層中抽取的個(gè)體數(shù)為()A.20 B.40 C.60 D.100二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,在四面體A-BCD中,已知棱AC的長為,其余各棱長都為1,則二面角A-CD-B的平面角的余弦值為________.12.若滿足約束條件則的最大值為__________.13.在平面直角坐標(biāo)系中,圓的方程為.若直線上存在一點(diǎn),使過所作的圓的兩條切線相互垂直,則實(shí)數(shù)的取值范圍是______.14.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層燈數(shù)為_____________15.若,則_________.16.已知在中,角的大小依次成等差數(shù)列,最大邊和最小邊的長是方程的兩實(shí)根,則__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.正四棱錐中,,分別為,的中點(diǎn).(1)求證:平面;(2)若,求異面直線和所成角的余弦值.18.如圖,在中,點(diǎn)在邊上,為的平分線,.(1)求;(2)若,,求.19.已知.(I)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的值;(II)若對任意,均有恒成立,求實(shí)數(shù)的取值范圍.20.已知,,函數(shù).(1)求在區(qū)間上的最大值和最小值;(2)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.21.某種汽車的購車費(fèi)用是10萬元,每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)約為萬元,年維修費(fèi)用第一年是萬元,第二年是萬元,第三年是萬元,…,以后逐年遞增萬元汽車的購車費(fèi)用、每年使用的保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)、維修費(fèi)用的和平均攤到每一年的費(fèi)用叫做年平均費(fèi)用.設(shè)這種汽車使用年的維修費(fèi)用的和為,年平均費(fèi)用為.(1)求出函數(shù),的解析式;(2)這種汽車使用多少年時(shí),它的年平均費(fèi)用最?。孔钚≈凳嵌嗌??
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】
由條件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求運(yùn)算求得結(jié)果.【題目詳解】∵等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且a1,a3,2a2成等差數(shù)列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故選:C.【題目點(diǎn)撥】本題主要考查等差中項(xiàng)的性質(zhì),等比數(shù)列的通項(xiàng)公式,考查了整體化的運(yùn)算技巧,屬于基礎(chǔ)題.2、C【解題分析】
由可得,所以的圖像是以原點(diǎn)為圓心,為半徑的圓的上半部分;再結(jié)合圖形求解.【題目詳解】由可得,作出兩個(gè)函數(shù)的圖像如下:則區(qū)域①的面積等于區(qū)域②的面積,所以他們的圖像圍成的區(qū)域面積為半圓的面積,即.故選C.【題目點(diǎn)撥】本題考查函數(shù)圖形的性質(zhì),關(guān)鍵在于的識(shí)別.3、A【解題分析】
首先判斷程序框圖的功能,然后從莖葉圖數(shù)出相應(yīng)人數(shù),從而得到答案.【題目詳解】由算法流程圖可知,其統(tǒng)計(jì)的是成績大于等于120的人數(shù),所以由莖葉圖知:成績大于等于120的人數(shù)為11,故選A.【題目點(diǎn)撥】本題主要考查算法框圖的輸出結(jié)果,意在考查學(xué)生的分析能力及計(jì)算能力,難度不大.4、B【解題分析】
首先根據(jù)題意得到,為方程的根,再解出的值帶入不等式即可.【題目詳解】有題知:,為方程的根.所以,解得.所以,解得:或.故選:B【題目點(diǎn)撥】本題主要考查二次不等式的求法,同時(shí)考查了學(xué)生的計(jì)算能力,屬于簡單題.5、C【解題分析】
在中,利用正弦定理求出即可.【題目詳解】在中,角,,所對的邊分別為,,,已知:,,,利用正弦定理:,解得:.故選C.【題目點(diǎn)撥】本題考查了正弦定理的應(yīng)用及相關(guān)的運(yùn)算問題,屬于基礎(chǔ)題.6、C【解題分析】
先根據(jù)判別式法求出的取值范圍,進(jìn)而求得和的關(guān)系,再展開算出分析即可.【題目詳解】設(shè),則,因?yàn)?故,故二次函數(shù),整理得,故與為方程的兩根,所以為常數(shù).故選C.【題目點(diǎn)撥】本題主要考查判別式法求分式函數(shù)范圍的問題,再根據(jù)二次函數(shù)的韋達(dá)定理進(jìn)行求解分析即可.7、C【解題分析】試題分析:因?yàn)閿?shù)列為等差數(shù)列,且,所以,,從而,所以,而,所以,故選C.考點(diǎn):等差數(shù)列的性質(zhì).8、C【解題分析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)即可得解.【題目詳解】作出可行域如圖,設(shè),聯(lián)立,則,,當(dāng)直線經(jīng)過點(diǎn)時(shí),截距取得最小值,取得最大值.故選:C【題目點(diǎn)撥】本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,屬于基礎(chǔ)題.9、A【解題分析】
結(jié)合函數(shù)零點(diǎn)的定義,利用充分條件和必要條件的定義進(jìn)行判斷,即可得出答案.【題目詳解】由題意,當(dāng)時(shí),,函數(shù)與有交點(diǎn),故函數(shù)有零點(diǎn);當(dāng)有零點(diǎn)時(shí),不一定取,只要滿足都符合題意.所以“”是“函數(shù)有零點(diǎn)”的充分不必要條件.故答案為:A【題目點(diǎn)撥】本題主要考查了函數(shù)零點(diǎn)的概念,以及對數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解答中熟記函數(shù)零點(diǎn)的定義,以及對數(shù)函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.10、B【解題分析】
求出丙層所占的比例,然后求出丙層中抽取的個(gè)體數(shù)【題目詳解】因?yàn)榧?、乙、丙三層,其個(gè)體數(shù)之比為,所以丙層所占的比例為,所以應(yīng)從丙層中抽取的個(gè)體數(shù)為,故本題選B.【題目點(diǎn)撥】本題考查了分層抽樣中某一層抽取的個(gè)體數(shù)的問題,考查了數(shù)學(xué)運(yùn)算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】如圖,取中點(diǎn),中點(diǎn),連接,由題可知,邊長均為1,則,中,,則,得,所以二面角的平面角即,在中,,則,所以.點(diǎn)睛:本題采用幾何法去找二面角,再進(jìn)行求解.利用二面角的定義:公共邊上任取一點(diǎn),在兩個(gè)面內(nèi)分別作公共邊的垂線,兩垂線的夾角就是二面角的平面角,找到二面角的平面角,再求出對應(yīng)三角形的三邊,利用余弦定理求解(本題中剛好為直角三角形).12、【解題分析】
作出可行域,根據(jù)目標(biāo)函數(shù)的幾何意義可知當(dāng)時(shí),.【題目詳解】不等式組表示的可行域是以為頂點(diǎn)的三角形區(qū)域,如下圖所示,目標(biāo)函數(shù)的最大值必在頂點(diǎn)處取得,易知當(dāng)時(shí),.【題目點(diǎn)撥】線性規(guī)劃問題是高考中??伎键c(diǎn),主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標(biāo)函數(shù)的最值,主要結(jié)合方式有:截距型、斜率型、距離型等.13、【解題分析】試題分析:記兩個(gè)切點(diǎn)為,則由于,因此四邊形是正方形,,圓標(biāo)準(zhǔn)方程為,,,于是圓心直線的距離不大于,,解得.考點(diǎn):直線和圓的位置關(guān)系.14、1【解題分析】分析:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,利用等比數(shù)列前n項(xiàng)和公式能求出結(jié)果.詳解:設(shè)塔的頂層共有a1盞燈,則數(shù)列{an}公比為2的等比數(shù)列,∴S7=a1(1-2點(diǎn)睛:本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力.15、【解題分析】
利用誘導(dǎo)公式求解即可【題目詳解】,故答案為:【題目點(diǎn)撥】本題考查誘導(dǎo)公式,是基礎(chǔ)題16、【解題分析】
本題首先可根據(jù)角的大小依次成等差數(shù)列計(jì)算出,然后根據(jù)最大邊和最小邊的長是方程的兩實(shí)根得到以及,最后根據(jù)余弦定理即可得出結(jié)果.【題目詳解】因?yàn)榻浅傻炔顢?shù)列,所以,又因?yàn)?,所?設(shè)方程的兩根分別為、,則,由余弦定理可知:,所以.【題目點(diǎn)撥】本題考查根據(jù)余弦定理求三角形邊長,考查等差中項(xiàng)以及韋達(dá)定理的應(yīng)用,余弦定理公式為,體現(xiàn)了綜合性,是中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解題分析】
(1)取的中點(diǎn),連接、,可得四邊形為平行四邊形,得到,由線面平行的判定可得平面;(2)連接交于,則為的中點(diǎn),結(jié)合為的中點(diǎn),得,可得(或其補(bǔ)角)為異面直線和所成角,在正四棱錐中,由為的中點(diǎn),且,可得,設(shè),求解三角形可得異面直線和所成角的余弦值.【題目詳解】(1)取的中點(diǎn),連接、,是的中點(diǎn),且,在正四棱錐中,底面為正方形,且,又為的中點(diǎn),且,且,則四邊形為平行四邊形,,平面,平面,平面;(2)連接交于,則為的中點(diǎn),又為的中點(diǎn),,又,(或其補(bǔ)角)為異面直線和所成角,在正四棱錐中,由為的中點(diǎn),且,,設(shè),則,,,則,因此,異面直線和所成角的余弦值為.【題目點(diǎn)撥】本題考查直線與平面平行的判定,考查空間想象能力與思維能力,訓(xùn)練了異面直線所成角的求法,是中檔題.18、(1)(2)【解題分析】
(1)令,正弦定理,得,代入面積公式計(jì)算得到答案.(2)由題意得到,化簡得到,,再利用面積公式得到答案.【題目詳解】(1)因?yàn)榈钠椒志€,令在中,,由正弦定理,得所以.(2)因?yàn)?,所以,又?得,,因?yàn)?,所以所?【題目點(diǎn)撥】本題考查了面積的計(jì)算,意在考查學(xué)生靈活利用正余弦定理和面積公式解決問題的能力.19、(I)或;(II).【解題分析】
(I)令,將有三個(gè)零點(diǎn)問題,轉(zhuǎn)化為有三個(gè)不同的解的解決.畫出和的圖像,結(jié)合圖像以及二次函數(shù)的判別式分類討論,由此求得的值.(II)令,將恒成立不等式等價(jià)轉(zhuǎn)化為恒成立,通過對分類討論,求得的最大值,由此求得的取值范圍.【題目詳解】(I)由題意等價(jià)于有三個(gè)不同的解由,可得其函數(shù)圖象如圖所示:聯(lián)立方程:,由可得結(jié)合圖象可知.同理,由可得,因?yàn)?,結(jié)合圖象可知,綜上可得:或.(Ⅱ)設(shè),原不就價(jià)于,兩邊同乘得:,設(shè),原題等價(jià)于的最大值.(1)當(dāng)時(shí),,易得,(2),,易得,所以的最大值為16,即,故.【題目點(diǎn)撥】本小題主要考查根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù),考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查不等式恒成立問題的求解策略,考查分類討論的數(shù)學(xué)思想,屬于難題.20、(1)(2)【解題分析】
(1)利用向量的數(shù)量積化簡即可得,再根據(jù),求出的范圍結(jié)合圖像即可解決.(2)根據(jù)(1)求出,再根據(jù)正弦函數(shù)的單調(diào)性求出的單調(diào)區(qū)間即可.【題目詳解】解:(1)因?yàn)樗?,所以,所以?)解法一:令得因?yàn)楹瘮?shù)在上是單調(diào)遞增函數(shù),所以存在,使得,所以有因?yàn)?,所以所以,又因?yàn)?,得所以從而有所以,所以解法二:由,得因?yàn)樗运越獾糜炙浴绢}目點(diǎn)撥】本題主要考查了正弦函數(shù)在給定區(qū)間是的最值以及根據(jù)根據(jù)函數(shù)的單調(diào)性求參數(shù).屬于中等題,解決本題的關(guān)鍵是記住正弦函數(shù)的單調(diào)性、最值等.21、(1),;(2)時(shí),年平均費(fèi)用最小,最小值為3萬元.【解題分析】試題分析:根據(jù)題意可知,汽車使用年的維修費(fèi)用的和為,而第一年的維修費(fèi)用是萬元,以后逐年遞增萬元,每一年的維修費(fèi)用形成以為首項(xiàng),為公差的等差數(shù)列,根據(jù)等差數(shù)列的前項(xiàng)和即可求出的解析式;將購車費(fèi)、每
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藝術(shù)教育創(chuàng)新實(shí)踐模板
- 2024年新品玻璃門采購安裝合同
- 安裝師徒合同范例
- 制式家裝合同范例
- 展覽公司合同范例
- 小蜜蜂合同模板
- 展品供應(yīng)合同范例
- 大巴廣告合作合同范例
- tudou購銷合同范例
- 可分組房屋租賃合同范例
- 鋼結(jié)構(gòu)工程冬季施工方案
- 2024年宏觀經(jīng)濟(jì)發(fā)展情況分析報(bào)告
- 攝影入門課程-攝影基礎(chǔ)與技巧全面解析
- 251直線與圓的位置關(guān)系(第1課時(shí))(導(dǎo)學(xué)案)(原卷版)
- XX有限公司人員分流方案
- 大語言模型賦能自動(dòng)化測試實(shí)踐、挑戰(zhàn)與展望-復(fù)旦大學(xué)(董震)
- 期中模擬檢測(1-3單元)2024-2025學(xué)年度第一學(xué)期西師大版二年級數(shù)學(xué)
- 追覓科技在線測評邏輯題
- 2024-2030年中國演藝行業(yè)發(fā)展分析及發(fā)展前景與趨勢預(yù)測研究報(bào)告
- 2025年廣東省高中學(xué)業(yè)水平考試春季高考數(shù)學(xué)試題(含答案解析)
- 2024年重慶市渝北區(qū)數(shù)據(jù)谷八中小升初數(shù)學(xué)試卷
評論
0/150
提交評論