版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆西藏拉薩市拉薩中學(xué)數(shù)學(xué)高一下期末達(dá)標(biāo)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若關(guān)于x的不等式x-1-x-2≥A.0,1 B.-1,0 C.-∞,-1∪0,2.若角α的終邊過點P(-3,-4),則cos(π-2α)的值為()A. B. C. D.3.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交 C.外切 D.相離4.下列命題中正確的是()A.如果兩條直線都平行于同一個平面,那么這兩條直線互相平行B.過一條直線有且只有一個平面與已知平面垂直C.如果一條直線平行于一個平面內(nèi)的一條直線,那么這條直線平行于這個平面D.如果兩條直線都垂直于同一平面,那么這兩條直線共面5.在中,根據(jù)下列條件解三角形,其中有一解的是()A.,,B.,,C.,,D.,,6.在平行四邊形ABCD中,若,則必有()A. B.或C.ABCD是矩形 D.ABCD是正方形7.若三棱錐中,,,,且,,,則該三棱錐外接球的表面積為()A. B. C. D.8.在等差數(shù)列中,為其前n項和,若,則()A.60 B.75 C.90 D.1059.正方體中,則異面直線與所成的角是A.30° B.45° C.60° D.90°10.已知是等差數(shù)列,且,,則()A.-5 B.-11 C.-12 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.住在同一城市的甲、乙兩位合伙人,約定在當(dāng)天下午4.00-5:00間在某個咖啡館相見商談合作事宜,他們約好當(dāng)其中一人先到后最多等對方10分鐘,若等不到則可以離去,則這兩人能相見的概率為__________.12.已知等差數(shù)列滿足,則__________.13.甲、乙兩名射擊運動員進(jìn)行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.7,現(xiàn)兩人各自獨立射擊一次,均中靶的概率為______.14.已知sin=,則cos=________.15.角的終邊經(jīng)過點,則___________________.16.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結(jié)論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某班在一次個人投籃比賽中,記錄了在規(guī)定時間內(nèi)投進(jìn)個球的人數(shù)分布情況:進(jìn)球數(shù)(個)012345投進(jìn)個球的人數(shù)(人)1272其中和對應(yīng)的數(shù)據(jù)不小心丟失了,已知進(jìn)球3個或3個以上,人均投進(jìn)4個球;進(jìn)球5個或5個以下,人均投進(jìn)2.5個球.(1)投進(jìn)3個球和4個球的分別有多少人?(2)從進(jìn)球數(shù)為3,4,5的所有人中任取2人,求這2人進(jìn)球數(shù)之和為8的概率.18.已知為常數(shù)且均不為零,數(shù)列的通項公式為并且成等差數(shù)列,成等比數(shù)列.(1)求的值;(2)設(shè)是數(shù)列前項的和,求使得不等式成立的最小正整數(shù).19.已知函數(shù).(1)證明函數(shù)在定義域上單調(diào)遞增;(2)求函數(shù)的值域;(3)令,討論函數(shù)零點的個數(shù).20.為了了解某省各景區(qū)在大眾中的熟知度,隨機(jī)從本省歲的人群中抽取了人,得到各年齡段人數(shù)的頻率分布直方圖如圖所示,現(xiàn)讓他們回答問題“該省有哪幾個國家級旅游景區(qū)?”,統(tǒng)計結(jié)果如下表所示:組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第組回答正確的人中用分層抽樣的方法抽取人,求第組每組抽取的人數(shù);(3)在(2)中抽取的人中隨機(jī)抽取人,求所抽取的人中恰好沒有年齡段在的概率21.已知等差數(shù)列中,,,數(shù)列中,,其前項和滿足:.(1)求數(shù)列、的通項公式;(2)設(shè),求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】x-1-x-2=x-1-∵關(guān)于x的不等式x-1-∴a2+a-1>1,即解得a>1或∴實數(shù)a的取值范圍為-∞,-2∪2、C【解題分析】
由三角函數(shù)的定義得,再利用誘導(dǎo)公式以及二倍角余弦公式求解.【題目詳解】由三角函數(shù)的定義,可得,則,故選C.【題目點撥】本題主要考查了三角函數(shù)的定義,以及二倍角的余弦公式的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、B【解題分析】試題分析:兩圓的圓心距為,半徑分別為,,所以兩圓相交.故選C.考點:圓與圓的位置關(guān)系.4、D【解題分析】
利用定理及特例法逐一判斷即可?!绢}目詳解】解:如果兩條直線都平行于同一個平面,那么這兩條直線相交、平行或異面,故A不正確;過一條直線有且只有一個平面與已知平面垂直,不正確.反例:如果該直線本身就垂直于已知平面的話,那么可以找到無數(shù)個平面與已知平面垂直,故B不正確;如果這兩條直線都在平面內(nèi)且平行,那么這直線不平行于這個平面,故C不正確;如果兩條直線都垂直于同一平面,則這兩條直線平行,所以這兩條直線共面,故D正確.故選:D.【題目點撥】本題主要考查了線線平行的判定,面面垂直的判定,線面平行的判定,線面垂直的性質(zhì),考查空間思維能力,屬于中檔題。5、D【解題分析】
根據(jù)三角形解的個數(shù)的判斷條件得出各選項中對應(yīng)的解的個數(shù),于此可得出正確選項.【題目詳解】對于A選項,,,此時,無解;對于B選項,,,此時,有兩解;對于C選項,,則為最大角,由于,此時,無解;對于D選項,,且,此時,有且只有一解.故選D.【題目點撥】本題考查三角形解的個數(shù)的判斷,解題時要熟悉三角形個數(shù)的判斷條件,考查推理能力,屬于中等題.6、C【解題分析】
由,化簡可得,得到,又由四邊形為平行四邊形,即可得到答案.【題目詳解】由,則,即,化簡可得,所以,即,又由四邊形為平行四邊形,所以該四邊形為矩形,故選C.【題目點撥】本題主要考查了向量的基本運算,以及向量的垂直關(guān)系的應(yīng)用,其中解答中熟記向量的基本運算,以及向量的垂直的判定是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.7、B【解題分析】
將棱錐補(bǔ)成長方體,根據(jù)長方體的外接球的求解方法法得到結(jié)果.【題目詳解】根據(jù)題意得到棱錐的三條側(cè)棱兩兩垂直,可以以三條側(cè)棱為長方體的楞,該三棱錐補(bǔ)成長方體,兩者的外接球是同一個,外接球的球心是長方體的體對角線的中點處。設(shè)球的半徑為R,則表面積為故答案為:B.【題目點撥】本題考查了球與幾何體的問題,是高考中的重點問題,要有一定的空間想象能力,這樣才能找準(zhǔn)關(guān)系,得到結(jié)果,一般外接球需要求球心和半徑,首先應(yīng)確定球心的位置,借助于外接球的性質(zhì),球心到各頂點距離相等,這樣可先確定幾何體中部分點組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點到多邊形的頂點的距離相等,然后同樣的方法找到另一個多邊形的各頂點距離相等的直線(這兩個多邊形需有公共點),這樣兩條直線的交點,就是其外接球的球心,再根據(jù)半徑,頂點到底面中心的距離,球心到底面中心的距離,構(gòu)成勾股定理求解,有時也可利用補(bǔ)體法得到半徑,例:三條側(cè)棱兩兩垂直的三棱錐,可以補(bǔ)成長方體,它們是同一個外接球.8、B【解題分析】
由條件,利用等差數(shù)列下標(biāo)和性質(zhì)可得,進(jìn)而得到結(jié)果.【題目詳解】,即,而,故選B.【題目點撥】本題考查等差數(shù)列的性質(zhì),考查運算能力與推理能力,屬于中檔題.9、C【解題分析】連接A,易知:平行A,∴異面直線與所成的角即異面直線與A所成的角,連接,易知△為等邊三角形,
∴異面直線與所成的角是60°故選C10、B【解題分析】
由是等差數(shù)列,求得,則可求【題目詳解】∵是等差數(shù)列,設(shè),∴故故選:B【題目點撥】本題考查等差數(shù)列的通項公式,考查計算能力,是基礎(chǔ)題二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
將甲、乙到達(dá)時間設(shè)為(以為0時刻,單位為分鐘).則相見需要滿足:畫出圖像,根據(jù)幾何概型公式得到答案.【題目詳解】根據(jù)題意:將甲、乙到達(dá)時間設(shè)為(以為0時刻,單位為分鐘)則相見需要滿足:畫出圖像:根據(jù)幾何概型公式:【題目點撥】本題考查了幾何概型的應(yīng)用,意在考查學(xué)生解決問題的能力.12、【解題分析】
由等差數(shù)列的性質(zhì)計算.【題目詳解】∵是等差數(shù)列,∴,∴.故答案為:1.【題目點撥】本題考查等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.等差數(shù)列的性質(zhì)如下:在等差數(shù)列中,,則.13、0.56【解題分析】
根據(jù)在一次射擊中,甲、乙同時射中目標(biāo)是相互獨立的,利用相互獨立事件的概率乘法公式,即可求解.【題目詳解】由題意,甲的中靶概率為0.8,乙的中靶概率為0.7,所以兩人均中靶的概率為,故答案為0.56【題目點撥】本題主要考查了相互獨立事件的概率乘法公式的應(yīng)用,其中解答中合理利用相互獨立的概率乘法公式求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、【解題分析】
由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案為.15、【解題分析】
先求出到原點的距離,再利用正弦函數(shù)定義求解.【題目詳解】因為,所以到原點距離,故.故答案為:.【題目點撥】設(shè)始邊為的非負(fù)半軸,終邊經(jīng)過任意一點,則:16、①③④⑤【解題分析】
設(shè)出幾何體的邊長,根據(jù)正六邊形的性質(zhì),線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關(guān)知識,對五個結(jié)論逐一分析,由此得出正確結(jié)論的序號.【題目詳解】設(shè)正六邊形長為,則.根據(jù)正六邊形的幾何性質(zhì)可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【題目點撥】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)投進(jìn)3個球和4個球的分別有2人和2人;(2).【解題分析】
(1)設(shè)投進(jìn)3個球和4個球的分別有,人,則,解方程組即得解.(2)利用古典概型的概率求這2人進(jìn)球數(shù)之和為8的概率.【題目詳解】解:(1)設(shè)投進(jìn)3個球和4個球的分別有,人,則解得.故投進(jìn)3個球和4個球的分別有2人和2人.(2)若要使進(jìn)球數(shù)之和為8,則1人投進(jìn)3球,另1人投進(jìn)5球或2人都各投進(jìn)4球.記投進(jìn)3球的2人為,;投進(jìn)4球的2人為,;投進(jìn)5球的2人為,.則從這6人中任選2人的所有可能事件為:,,,,,,,,,,,,,,.共15種.其中進(jìn)球數(shù)之和為8的是,,,,,有5種.所以這2人進(jìn)球數(shù)之和為8的概率為.【題目點撥】本題主要考查平均數(shù)的計算和古典概型的概率的計算,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于基礎(chǔ)題.18、(1);(2)【解題分析】
(1)由,可得,,,.根據(jù)、、成等差數(shù)列,、、成等比數(shù)列.可得,,代入解出即可得出.(2)由(1)可得:,可得,分別利用等差數(shù)列與等比數(shù)列的求和公式即可得出.【題目詳解】(1),,,,.,,成等差數(shù)列,,,成等比數(shù)列.,,,,,.聯(lián)立解得:,.(2)由(1)可得:,,由,解得..【題目點撥】本題考查等差數(shù)列與等比數(shù)列的通項公式與求和公式及其性質(zhì)、分類討論方法、不等式的解法,考查推理能力與計算能力,屬于中檔題.19、(1)證明見解析;(2);(3)當(dāng)時,沒有零點;當(dāng)時,有且僅有一個零點【解題分析】
(1)求出函數(shù)定義域后直接用定義法即可證明;(2)由題意得,對兩邊同時平方得,求出的取值范圍即可得解;(3)轉(zhuǎn)化條件得,令,利用二次函數(shù)的性質(zhì)分類討論即可得解.【題目詳解】(1)證明:令,解得,故函數(shù)的定義域為令,由,可得,所以,,故即,所以函數(shù)在定義域上單調(diào)遞增.(2)由,,故,,當(dāng)時,,有,可得:,故,由,可得,故函數(shù)的值域為,(3)由(2)知,則,令,則,令,①當(dāng)時,,此時函數(shù)沒有零點,故函數(shù)也沒有零點;②當(dāng)時,二次函數(shù)的對稱軸為,則函數(shù)在區(qū)間單調(diào)遞增,而,,故函數(shù)有一個零點,又由函數(shù)單調(diào)遞增,可得函數(shù)也只有一個零點;③當(dāng)時,,二次函數(shù)開口向下,對稱軸,又,,此時函數(shù)沒有零點,故函數(shù)也沒有零點.綜上,當(dāng)時,函數(shù)沒有零點;當(dāng)時,函數(shù)有且僅有一個零點.【題目點撥】本題考查了函數(shù)單調(diào)性的證明、值域的求解和零點問題,考查了轉(zhuǎn)化化歸思想和分類討論思想,屬于中檔題.20、(1),,,;(2)分邊抽取2,3,1人;(3).【解題分析】
(1)根據(jù)數(shù)據(jù)表和頻率分布直方圖可計算得到第組的人數(shù)和頻率,從而可得總?cè)藬?shù);根據(jù)總數(shù)、頻率和頻數(shù)的關(guān)系,可分別計算得到所求結(jié)果;(2)首先確定第組的總?cè)藬?shù),根據(jù)分層抽樣原則計算即可得到結(jié)果;(3)首先計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西昌學(xué)院《電視節(jié)目播音主持》2023-2024學(xué)年第一學(xué)期期末試卷
- 詩歌與青春 單元說課稿 2024-2025學(xué)年統(tǒng)編版高中語文必修上冊
- 第5課 工業(yè)革命與工廠制度 說課稿-2023-2024學(xué)年高中歷史統(tǒng)編版(2019)選擇性必修二經(jīng)濟(jì)與社會生活
- DB51-T 2931-2022 社區(qū)矯正社會服務(wù)工作規(guī)范
- 預(yù)制裝配式建筑全景分析試卷(含答案)
- 《Unit 4 How Are You》(說課稿)-2024-2025學(xué)年陜旅版(三起)(2024)英語三年級上冊
- 第一課 用Python編程 第一課時 說課稿 2024-2025學(xué)年新世紀(jì)版(2018)初中信息技術(shù)八年級上冊
- 鞍山到大連旅游合同
- 《深圳市工程建設(shè)監(jiān)理合同》標(biāo)準(zhǔn)合同文本
- 6 將相和 第二課時 說課稿-2024-2025學(xué)年語文五年級上冊統(tǒng)編版
- 匹茲堡睡眠質(zhì)量指數(shù)(psqi)表格
- 5、火災(zāi)事故桌面演練記錄表
- 《甲基化與腫瘤》PPT課件.ppt
- 中國電信渠道管理工作指導(dǎo)意見
- 海水比重與鹽度換算表
- 行政法對憲法實施的作用探討
- BIM等信息技術(shù)的使用
- 西方發(fā)愿文是一篇圓滿的作品它包括了初中后三階段最
- 檁條規(guī)格選用表
- 圖形推理100道(附答案)
- 群青生產(chǎn)工藝過程
評論
0/150
提交評論