四川省宜賓市敘州區(qū)二中2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
四川省宜賓市敘州區(qū)二中2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
四川省宜賓市敘州區(qū)二中2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
四川省宜賓市敘州區(qū)二中2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
四川省宜賓市敘州區(qū)二中2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省宜賓市敘州區(qū)二中2024屆數(shù)學(xué)高一第二學(xué)期期末教學(xué)質(zhì)量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)在區(qū)間(,)內(nèi)的圖象是()A. B. C. D.2.角的終邊在直線上,則()A. B. C. D.3.在某項體育比賽中,七位裁判為一選手打出的分?jǐn)?shù)如下:90,89,90,95,93,94,93,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為()A.92,2 B.92,2.8 C.93,2 D.93,2.84.某興趣小組合作制作了一個手工制品,并將其繪制成如圖所示的三視圖,其中側(cè)視圖中的圓的半徑為3,則制作該手工制品表面積為()A. B. C. D.5.已知某幾何體的三視圖是如圖所示的三個直角三角形,則該幾何體的外接球的表面積為()A.17π B.34π C.51π D.68π6.設(shè)公差為-2的等差數(shù)列,如果,那么等于()A.-182 B.-78 C.-148 D.-827.《張丘建算經(jīng)》中女子織布問題為:某女子善于織布,一天比一天織得快,且從第2天開始,每天比前一天多織相同量的布,已知第一天織5尺布,一月(按30天計)共織390尺布,則從第2天起每天比前一天多織()尺布.A. B. C. D.8.如圖所示,在正方形ABCD中,E為AB的中點,F(xiàn)為CE的中點,則A. B.C. D.9.在區(qū)間隨機(jī)取一個實數(shù),則的概率為()A. B. C. D.10.已知兩點,若點是圓上的動點,則面積的最大值為()A.13 B.3 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的通項公式為,是其前項和,則_____.(結(jié)果用數(shù)字作答)12.已知向量,若,則_______13.已知,且,則_____.14.函數(shù)的反函數(shù)為__________.15.設(shè),,,,則數(shù)列的通項公式=.16.已知,,且,則的最小值為________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)數(shù)列,,已知,,(1)求數(shù)列的通項公式;(2)設(shè)為數(shù)列的前項和,對任意.(i)求證:;(ii)若恒成立,求實數(shù)的取值范圍.18.在平面直角坐標(biāo)系xOy中,已知點,圓.(1)求過點P且與圓C相切于原點的圓的標(biāo)準(zhǔn)方程;(2)過點P的直線l與圓C依次相交于A,B兩點.①若,求l的方程;②當(dāng)面積最大時,求直線l的方程.19.已知函數(shù).(1)求的最小正周期,并求其單調(diào)遞減區(qū)間;(2)的內(nèi)角,,所對的邊分別為,,,若,且為鈍角,,求面積的最大值.20.已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.在中,角所對的邊分別為,且.(1)求;(2)若,求的周長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】解:函數(shù)y=tanx+sinx-|tanx-sinx|=分段畫出函數(shù)圖象如D圖示,故選D.2、C【解題分析】

先由直線的斜率得出,再利用誘導(dǎo)公式將分式化為弦的一次分式齊次式,并在分子分母中同時除以,利用弦化切的思想求出所求代數(shù)式的值.【題目詳解】角的終邊在直線上,,則,故選C.【題目點撥】本題考查誘導(dǎo)公式化簡求值,考查弦化切思想的應(yīng)用,弦化切一般適用于以下兩個方面:(1)分式為角弦的次分式齊次式,在分子分母中同時除以,可以弦化切;(2)代數(shù)式為角的二次整式,先除以,轉(zhuǎn)化為角弦的二次分式其次式,然后在分子分母中同時除以,可以實現(xiàn)弦化切.3、B【解題分析】

由平均數(shù)與方差的計算公式,計算90,90,93,94,93五個數(shù)的平均數(shù)和方差即可.【題目詳解】90,89,90,95,93,94,93,去掉一個最高分和一個最低分后是90,90,93,94,93,所以其平均數(shù)為,因此方差為.故選B【題目點撥】本題主要考查平均數(shù)與方差的計算,熟記公式即可,屬于基礎(chǔ)題型.4、D【解題分析】

由三視圖可知,得到該幾何體是由兩個圓錐組成的組合體,根據(jù)幾何體的表面積公式,即可求解.【題目詳解】由三視圖可知,該幾何體是由兩個圓錐組成的組合體,其中圓錐的底面半徑為3,高為4,所以幾何體的表面為.選D.【題目點撥】本題考查了幾何體的三視圖及表面積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.5、B【解題分析】

由三視圖還原出原幾何體,得幾何體的結(jié)構(gòu)(特別是垂直關(guān)系),從而確定其外接球球心位置,得球半徑.【題目詳解】由三視圖知原幾何體是三棱錐,如圖,平面,平面.由這兩個線面垂直,得,因此的中點到四頂點的距離相等,即為外接球球心.由三視圖得,,∴.故選:B.【題目點撥】本題考查三棱錐外接球表面積,考查三視圖.解題關(guān)鍵是由三視圖還原出原幾何體,確定幾何體的結(jié)構(gòu),找到外接球球心.6、D【解題分析】

根據(jù)利用等差數(shù)列通項公式及性質(zhì)求得答案.【題目詳解】∵{an}是公差為﹣2的等差數(shù)列,∴a3+a6+a9+…+a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50﹣132=﹣1.故選D.【題目點撥】本題主要考查了等差數(shù)列的通項公式及性質(zhì)的應(yīng)用,考查了運算能力,屬基礎(chǔ)題.7、B【解題分析】由題可知每天織的布的多少構(gòu)成等差數(shù)列,其中第一天為首項,一月按30天計可得,從第2天起每天比前一天多織的即為公差.又,解得.故本題選B.8、D【解題分析】

由平面向量基本定理和向量運算求解即可【題目詳解】根據(jù)題意得:,又,,所以.故選D.【題目點撥】本題主要考查了平面向量的基本定理的簡單應(yīng)用,屬于基礎(chǔ)題.9、C【解題分析】

利用幾何概型的定義區(qū)間長度之比可得答案,在區(qū)間的占比為,所以概率為?!绢}目詳解】因為的長度為3,在區(qū)間的長度為9,所以概率為。故選:C【題目點撥】此題考查幾何概型,概率即是在部分占總體的占比,屬于簡單題目。10、C【解題分析】

先求出直線方程,然后計算出圓心到直線的距離,根據(jù)面積的最大時,以及高最大的條件,可得結(jié)果.【題目詳解】由,利用直線的截距式所以直線方程為:即由圓,即所以圓心為,半徑為則圓心到直線的距離為要使面積的最大,則圓上的點到最大距離為所以面積的最大值為故選:C【題目點撥】本題考查圓與直線的幾何關(guān)系以及點到直線的距離,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】

由題意知,數(shù)列的偶數(shù)項成等差數(shù)列,奇數(shù)列成等比數(shù)列,然后利用等差數(shù)列和等比數(shù)列的求和公式可求出的值.【題目詳解】由題意可得,故答案為.【題目點撥】本題考查奇偶分組求和,同時也考查等差數(shù)列求和以及等比數(shù)列求和,解題時要得出公差和公比,同時也要確定出對應(yīng)的項數(shù),考查運算求解能力,屬于中等題.12、【解題分析】

由題意利用兩個向量垂直的性質(zhì),兩個向量的數(shù)量積公式,求得的值.【題目詳解】因為向量,若,∴,則.故答案為:1.【題目點撥】本題主要考查兩個向量垂直的坐標(biāo)運算,屬于基礎(chǔ)題.13、【解題分析】

首先根據(jù)已知條件求得的值,平方后利用同角三角函數(shù)的基本關(guān)系式求得的值.【題目詳解】由得,兩邊平方并化簡得,由于,所以.而,由于,所以【題目點撥】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查兩角和的正弦公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14、【解題分析】

由得,即,把與互換即可得出【題目詳解】由得所以把與互換,可得故答案為:【題目點撥】本題考查的是反函數(shù)的求法,較簡單.15、2n+1【解題分析】由條件得,且,所以數(shù)列是首項為4,公比為2的等比數(shù)列,則.16、【解題分析】

由,可得,然后利用基本不等式可求出最小值.【題目詳解】因為,所以,當(dāng)且僅當(dāng),時取等號.【題目點撥】利用基本不等式求最值必須具備三個條件:①各項都是正數(shù);②和(或積)為定值;③等號取得的條件.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)(i)見證明;(ii)【解題分析】

(1)計算可知數(shù)列為等比數(shù)列;(2)(i)要證即證{}恒為0;(ii)由前兩問求出再求出,帶入式子,再解不等式.【題目詳解】(1),又,是以2為首項,為公比的等比數(shù)列,;(2)(i),又恒成立,即(ii)由,,兩式相加即得:,,,,當(dāng)n為奇數(shù)時,隨n的增大而遞增,且;當(dāng)n為偶數(shù)時,隨n的增大而遞減,且;的最大值為,的最小值為2,解得,所以實數(shù)p的取值范圍為.【題目點撥】本類試題,注意看問題,一般情況,問題都會指明解題方向18、(1);(2)①;②或.【解題分析】

(1)設(shè)所求圓的圓心為,而所求圓的圓心與、共線,故圓心在直線上,又圓同時經(jīng)過點與點,求出圓的圓心和半徑,即可得答案;(2)①由題意可得為圓的直徑,求出的坐標(biāo),可得直線的方程;②當(dāng)直線的斜率不存在時,直線方程為,求出,的坐標(biāo),得到的面積;當(dāng)直線的斜率存在時,設(shè)直線方程為.利用基本不等式、點到直線的距離公式求得,則直線方程可求.【題目詳解】(1)由,得,圓的圓心坐標(biāo),設(shè)所求圓的圓心為.而所求圓的圓心與、共線,故圓心在直線上,又圓同時經(jīng)過點與點,圓心又在直線上,則有:,解得:,即圓心的坐標(biāo)為,又,即半徑,故所求圓的方程為;(2)①由,得為圓的直徑,則過點,的方程為,聯(lián)立,解得,直線的斜率,則直線的方程為,即;②當(dāng)直線的斜率不存在時,直線方程為,此時,,,;當(dāng)直線的斜率存在時,設(shè)直線方程為.再設(shè)直線被圓所截弦長為,則圓心到直線的距離,則.當(dāng)且僅當(dāng),即時等號成立.此時弦長為10,圓心到直線的距離為5,由,解得.直線方程為.當(dāng)面積最大時,所求直線的方程為:或.【題目點撥】本題考查圓的方程的求法、直線與圓的位置關(guān)系應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力.19、(1)最小正周期;單調(diào)遞減區(qū)間為;(2)【解題分析】

(1)利用二倍角和輔助角公式可化簡函數(shù)為;利用可求得最小正周期;令解出的范圍即可得到單調(diào)遞減區(qū)間;(2)由可得,根據(jù)的范圍可求出的取值;利用余弦定理和基本不等式可求出的最大值,代入三角形面積公式求得結(jié)果.【題目詳解】(1)最小正周期:令得:的單調(diào)遞減區(qū)間為:單調(diào)遞減區(qū)間.(2)由得:,解得:由余弦定理得:(當(dāng)且僅當(dāng)時取等號)即面積的最大值為:【題目點撥】本題考查正弦型函數(shù)最小正周期和單調(diào)區(qū)間的求解、解三角形中三角形面積最值的求解問題;涉及到二倍角公式和輔助角公式的應(yīng)用、余弦定理和三角形面積公式的應(yīng)用等知識;求解正弦型函數(shù)單調(diào)區(qū)間的常用解法為整體代入的方式,通過與正弦函數(shù)圖象的對應(yīng)關(guān)系來進(jìn)行求解.20、(1);(2).【解題分析】

(1)由遞推公式,再遞推一步,得,兩式相減化簡得,可以判斷數(shù)列是等差數(shù)列,進(jìn)而可以求出等差數(shù)列的通項公式;(2)根據(jù)(1)和對數(shù)的運算性質(zhì),用裂項相消法可以求出數(shù)列的前項和.【題目詳解】解:(1)由知所以,即,從而所以,數(shù)列是以2為公比的等比數(shù)列又可得,綜上所述,故.(2)由(1)可知,故,綜上所述,所以,故而所以.【題目點撥】本題考查了已知遞推公式求數(shù)列通項公式問題,考查了等差數(shù)列的判斷以及等差數(shù)列的通項公式,考查了用裂項相消法求數(shù)列前項和問題,考查了數(shù)學(xué)運算能力.21、(1);(2)【解題分析】

分析:(1)利用正弦定理,求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論