2024屆海南省東方市瓊西中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第1頁
2024屆海南省東方市瓊西中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第2頁
2024屆海南省東方市瓊西中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第3頁
2024屆海南省東方市瓊西中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第4頁
2024屆海南省東方市瓊西中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆海南省東方市瓊西中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知正四面體ABCD中,E是AB的中點,則異面直線CE與BD所成角的余弦值為()A. B. C. D.2.在中,角,,所對的邊為,,,且為銳角,若,,,則()A. B. C. D.3.已知數(shù)列的前項和為,且滿足,,則()A. B. C. D.4.在中,若,,,則()A. B. C. D.5.已知等差數(shù)列共有10項,其中奇數(shù)項之和15,偶數(shù)項之和為30,則其公差是()A.5 B.4 C.3 D.26.三棱錐V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,則二面角V-AB-CA.30° B.45° C.60° D.90°7.已知是等差數(shù)列,其中,,則公差()A. B. C. D.8.某班設(shè)計了一個八邊形的班徽(如圖),它由腰長為1,頂角為的四個等腰三角形,及其底邊構(gòu)成的正方形所組成,該八邊形的面積為A.; B.C. D.9.設(shè)等比數(shù)列{an}的前n項和為Sn,若S6A.73 B.2 C.810.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|)的部分圖象如圖所示,則f(x)的解析式為()A.f(x)=sin(x)﹣1 B.f(x)=2sin(x)﹣1C.f(x)=2sin(x)﹣1 D.f(x)=2sin(2x)+1二、填空題:本大題共6小題,每小題5分,共30分。11.夏季某座高山上的溫度從山腳起每升高100米降低0.8度,若山腳的溫度是36度,山頂?shù)臏囟仁?0度,則這座山的高度是________米12.長方體的一個頂點上的三條棱長分別是3,4,5,且它的8個頂點都在同一個球面上,則這個球的表面積是13.水平放置的的斜二測直觀圖如圖所示,已知,,則邊上的中線的實際長度為______.14.已知四棱錐的底面是邊長為的正方形,側(cè)棱長均為,若圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的側(cè)面積為________.15.已知,則__________.16.已知兩點A(2,1)、B(1,1+)滿足=(sinα,cosβ),α,β∈(﹣,),則α+β=_______________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知直線經(jīng)過點,且與軸正半軸交于點,與軸正半軸交于點,為坐標原點.(1)若點到直線的距離為4,求直線的方程;(2)求面積的最小值.18.已知圓經(jīng)過點.(1)若直線與圓相切,求的值;(2)若圓與圓無公共點,求的取值范圍.19.為了了解四川省各景點在大眾中的熟知度,隨機對歲的人群抽樣了人,回答問題“四川省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如表.組號分組回答正確的人數(shù)回答正確的人數(shù)占本組的頻率第組第組第組第組第組(1)分別求出的值;(2)從第,,組回答正確的人中用分層抽樣的方法抽取人,求第,,組每組各抽取多少人?(3)通過直方圖求出年齡的眾數(shù),平均數(shù).20.如圖,在四棱錐P-ABCD中,平面PAD⊥底面ABCD,側(cè)棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.(Ⅰ)求證:PO⊥平面ABCD;(Ⅱ)線段AD上是否存在點,使得它到平面PCD的距離為?若存在,求出值;若不存在,請說明理由.21.已知夾角為,且,,求:(1);(2)與的夾角.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】試題分析:如圖,取中點,連接,因為是中點,則,或其補角就是異面直線所成的角,設(shè)正四面體棱長為1,則,,.故選B.考點:異面直線所成的角.【名師點睛】求異面直線所成的角的關(guān)鍵是通過平移使其變?yōu)橄嘟恢本€所成角,但平移哪一條直線、平移到什么位置,則依賴于特殊的點的選取,選取特殊點時要盡可能地使它與題設(shè)的所有相減條件和解題目標緊密地聯(lián)系起來.如已知直線上的某一點,特別是線段的中點,幾何體的特殊線段.2、D【解題分析】

利用正弦定理化簡,再利用三角形面積公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【題目詳解】由于,有正弦定理可得:,即由于在中,,,所以,聯(lián)立,解得:,由于為銳角,且,所以所以在中,由余弦定理可得:,故(負數(shù)舍去)故答案選D【題目點撥】本題考查正弦定理,余弦定理,以及面積公式在三角形求邊長中的應(yīng)用,屬于中檔題.3、B【解題分析】

由可知,數(shù)列隔項成等比數(shù)列,從而得到結(jié)果.【題目詳解】由可知:當n≥2時,,兩式作商可得:∴奇數(shù)項構(gòu)成以1為首項,2為公比的等比數(shù)列,偶數(shù)項構(gòu)成以2為首項,2為公比的等比數(shù)列,∴故選:B【題目點撥】本題考查數(shù)列的遞推關(guān)系,考查隔項成等比,考查分析問題解決問題的能力,屬于中檔題.4、D【解題分析】

由正弦定理構(gòu)造方程即可求得結(jié)果.【題目詳解】由正弦定理得:本題正確選項:【題目點撥】本題考查正弦定理解三角形的問題,屬于基礎(chǔ)題.5、C【解題分析】,故選C.6、C【解題分析】

取AB中點O,連結(jié)VO,CO,由等腰三角形的性質(zhì)可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度數(shù).【題目詳解】取AB中點O,連結(jié)VO,CO,∴三棱錐V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度數(shù)為60°【題目點撥】本題主要考查三棱錐的性質(zhì)、二面角的求法,屬于中檔題.求二面角的大小既能考查線線垂直關(guān)系,又能考查線面垂直關(guān)系,同時可以考查學(xué)生的計算能力,是高考命題的熱點,求二面角的方法通常有兩個思路:一是利用空間向量,建立坐標系,這種方法優(yōu)點是思路清晰、方法明確,但是計算量較大;二是傳統(tǒng)方法,求出二面角平面角的大小,這種解法的關(guān)鍵是找到平面角.7、D【解題分析】

根據(jù)等差數(shù)列通項公式即可構(gòu)造方程求得結(jié)果.【題目詳解】故選:【題目點撥】本題考查等差數(shù)列基本量的計算,關(guān)鍵是熟練應(yīng)用等差數(shù)列通項公式,屬于基礎(chǔ)題.8、A【解題分析】

試題分析:利用余弦定理求出正方形面積;利用三角形知識得出四個等腰三角形面積;故八邊形面積.故本題正確答案為A.考點:余弦定理和三角形面積的求解.【方法點晴】本題是一道關(guān)于三角函數(shù)在幾何中的應(yīng)用的題目,掌握正余弦定理是解題的關(guān)鍵;首先根據(jù)三角形面積公式求出個三角形的面積;接下來利用余弦定理可求出正方形的邊長的平方,進而得到正方形的面積,最后得到答案.9、A【解題分析】解:因為等比數(shù)列{an}的前n項和為Sn,則Sn,S2n-Sn,S3n-S2n成等比,(Sn≠0)所以S610、D【解題分析】

由已知列式求得的值,再由周期求得的值,利用五點作圖的第二個點求得的值,即可得到答案.【題目詳解】由題意,根據(jù)三角函數(shù)的圖象,可得,解得,又由,解得,則,又由五點作圖的第二個點可得:,解得,所以函數(shù)的解析式為,故選D.【題目點撥】本題主要考查了由的部分圖象求解函數(shù)的解析式,其中解答中熟記三角函數(shù)的五點作圖法,以及三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.二、填空題:本大題共6小題,每小題5分,共30分。11、2000【解題分析】

由題意得,溫度下降了,再求出這個溫度是由幾段100米得出來的,最后乘以100即可.【題目詳解】由題意得,這座山的高度為:米故答案為:2000【題目點撥】本題結(jié)合實際問題考查有理數(shù)的混合運算,解題關(guān)鍵是溫度差里有幾個0.8,屬于基礎(chǔ)題.12、【解題分析】

利用長方體的體對角線是長方體外接球的直徑,求出球的半徑,從而可得結(jié)果.【題目詳解】本題主要考查空間幾何體的表面積與體積.長方體的體對角線是長方體外接球的直徑,設(shè)球的半徑為,則,可得,球的表面積故答案為.【題目點撥】本題主要考查長方體與球的幾何性質(zhì),以及球的表面積公式,屬于基礎(chǔ)題.13、【解題分析】

利用斜二測直觀圖的畫圖規(guī)則,可得為一個直角三角形,且,得,從而得到邊上的中線的實際長度為.【題目詳解】利用斜二測直觀圖的畫圖規(guī)則,平行于軸或在軸上的線段,長度保持不變;平行于軸或在軸上的線段,長度減半,利用逆向原則,所以為一個直角三角形,且,所以,所以邊上的中線的實際長度為.【題目點撥】本題考查斜二測畫法的規(guī)則,考查基本識圖、作圖能力.14、【解題分析】

先求出四棱錐的底面對角線的長度,結(jié)合勾股定理可求出四棱錐的高,然后由圓柱的一個底面的圓周經(jīng)過四棱錐四條側(cè)棱的中點,可知四條側(cè)棱的中點連線為正方形,其對角線為圓柱底面的直徑,圓柱的高為四棱錐的高的一半,分別求解可求出圓柱的側(cè)面積.【題目詳解】由題可知,四棱錐是正四棱錐,四棱錐的四條側(cè)棱的中點連線為正方形,邊長為,該正方形對角線的長為1,則圓柱的底面半徑為,四棱錐的底面是邊長為的正方形,其對角線長為2,則四棱錐的高為,故圓柱的高為1,所以圓柱的側(cè)面積為.【題目點撥】本題主要考查了空間幾何體的結(jié)構(gòu)特征,考查了學(xué)生的空間想象能力與計算求解能力,屬于中檔題.15、【解題分析】16、或0【解題分析】

運用向量的加減運算和特殊角的三角函數(shù)值,可得所求和.【題目詳解】兩點A(2,1)、B(1,1)滿足(sinα,cosβ),可得(﹣1,)=(,)=(sinα,cosβ),即為sinα,cosβ,α,β∈(),可得α,β=±,則α+β=0或.故答案為0或.【題目點撥】本題考查向量的加減運算和三角方程的解法,考查運能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)直線過定點P,故設(shè)直線l的方程為,再由點到直線的距離公式,即可解得k,得出直線方程;(2)設(shè)直線方程,,表示出A,B點的坐標,三角形面積為,根據(jù)k的取值范圍即可取出面積最小值.【題目詳解】解:(1)由題意可設(shè)直線的方程為,即,則,解得.故直線的方程為,即.(2)因為直線的方程為,所以,,則的面積為.由題意可知,則(當且僅當時,等號成立).故面積的最小值為.【題目點撥】本題考查求直線方程和用基本不等式求三角形面積的最小值.18、(1)或.(2)【解題分析】試題分析:由題意可得圓的方程為.(1)由圓心到直線的距離等于半徑可得,解得或,即為所求.(2)由圓與圓無公共點可得兩圓內(nèi)含或外離,根據(jù)圓心距和兩半徑的關(guān)系得到不等式即可得到所求范圍.試題解析:將點的坐標代入,可得,所以圓的方程為,即,故圓心為,半徑.(1)因為直線與圓相切,所以圓心到直線的距離等于圓的半徑,即,整理得,解得或.(2)圓的圓心為,則,由題意可得圓與圓內(nèi)含或外離,所以或,解得或.所以的取值范圍為.19、(1);(2)第組抽取人,第組抽取人,第組抽取人;(3)40,.【解題分析】

(1)由頻率分布表得第四組人數(shù)為25人,由頻率分布直方圖得第四組的頻率為0.25,從而求出.由此求出各組人數(shù),進而能求出,,,的值.(2)由第2,3,4組回答正確的人分別有18、27、9人,從中用分層抽樣的方法抽取6人,由此能求出第2,3,4組每組各抽取多少人.(3)由頻率分布直方圖能求出年齡的眾數(shù),平均數(shù).【題目詳解】(1)由頻率分布表得第四組人數(shù)為:人,由頻率分布直方圖得第四組的頻率為,.第一組抽取的人數(shù)為:人,第二組抽取的人數(shù)為:人,第三組抽取的人數(shù)為:人,第五組抽取的人數(shù)為:人,.(2)第,,組回答正確的人分別有、、人,從中用分層抽樣的方法抽取人,第組抽?。喝?,第組抽取:人,第組抽?。喝耍?)由頻率分布直方圖得:年齡的眾數(shù)為:,年齡的平均數(shù)為:【題目點撥】本題考查頻率、頻數(shù)、眾數(shù)、平均數(shù)的求法,考查分層抽樣的應(yīng)用,是基礎(chǔ)題,解題時要認真審題,注意頻率分布直方圖的性質(zhì)的合理運用.20、(Ⅰ)證明見解析;(Ⅱ).【解題分析】試題分析:(Ⅰ)只需證明,又由面面垂直的性質(zhì)定理知平面;(Ⅱ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論