版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題05全等三角形常見輔助線專題探究類型一倍長中線——構(gòu)全等【知識點睛】倍長中線輔助線方法規(guī)律總結(jié)基本圖形輔助線條件與結(jié)論應(yīng)用環(huán)境延長AD到點E,使DE=AD,連接CE條件:△ABC,AD=BD結(jié)論:△ABD≌△CED(SAS)①倍長中線常和△三邊關(guān)系結(jié)合,考察中線長的取值范圍②倍長中線也可以和其他幾何圖形結(jié)合,考察幾何圖形的面積問題倍長中線模型的變形——“倍長中線類”模型:基本圖形輔助線條件與結(jié)論應(yīng)用環(huán)境延長AD交直線l2于點E,條件:l1∥l2,CD=BD結(jié)論:△ABD≌△ECD(AAS)與含有平行元素的幾何圖形結(jié)合考察全等三角形的判定【類題訓(xùn)練】1.如圖,△ABC中,AB=6,AC=4,D是BC的中點,AD的取值范圍為.2.如圖,D是AB延長線上一點,DF交AC于點E,AE=CE,F(xiàn)C∥AB,若AB=3,CF=5,則BD的長是()A.0.5 B.1 C.1.5 D.23.如圖,在△ACD中,∠CAD=90°,AC=6,AD=10,AB∥CD,E是CD上一點,BE交AD于點F,若AB=DE,則圖中陰影部分的面積為.4.(1)方法呈現(xiàn):如圖①:在△ABC中,若AB=6,AC=4,點D為BC邊的中點,求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE,可證△ACD≌△EBD,從而把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是(直接寫出范圍即可).這種解決問題的方法我們稱為倍長中線法;(2)探究應(yīng)用:如圖②,在△ABC中,點D是BC的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,判斷BE+CF與EF的大小關(guān)系并證明;(3)問題拓展:如圖③,在四邊形ABCD中,AB∥CD,AF與DC的延長線交于點F、點E是BC的中點,若AE是∠BAF的角平分線.試探究線段AB,AF,CF之間的數(shù)量關(guān)系,并加以證明.5.【閱讀理解】課外興趣小組活動時,老師提出了如下問題:如圖1,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到點E,使DE=AD,請根據(jù)小明的方法思考:(1)由已知和作圖能得到△ADC≌△EDB的理由是A.SSSB.SASC.AASD.HL(2)求得AD的取值范圍是A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【方法感悟】解題時,條件中若出現(xiàn)“中點”“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個三角形中.【問題解決】(3)如圖2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中線,求證:∠C=∠BAE.6.(1)方法學(xué)習(xí):數(shù)學(xué)興趣小組活動時,張老師提出了如下問題:如圖1,在△ABC中,AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法(如圖2),①延長AD到M,使得DM=AD;②連接BM,通過三角形全等把AB、AC、2AD轉(zhuǎn)化在△ABM中;③利用三角形的三邊關(guān)系可得AM的取值范圍為AB﹣BM<AM<AB+BM,從而得到AD的取值范圍是;方法總結(jié):上述方法我們稱為“倍長中線法”.“倍長中線法”多用于構(gòu)造全等三角形和證明邊之間的關(guān)系.(2)請你寫出圖2中AC與BM的數(shù)量關(guān)系和位置關(guān)系,并加以證明.(3)深入思考:如圖3,AD是△ABC的中線,AB=AE,AC=AF,∠BAE=∠CAF=90°,請直接利用(2)的結(jié)論,試判斷線段AD與EF的數(shù)量關(guān)系,并加以證明.類型二截長補短——造全等【知識點睛】截長補短輔助線方法規(guī)律總結(jié)基本圖形輔助線條件與結(jié)論應(yīng)用環(huán)境在AC上截取AE=AD,連接PE條件:AP平分∠BAC,結(jié)論:△APD≌△APE(SAS)①截長補短類輔助線經(jīng)常和角平分線同步考察②截長補短類全等的目的通常是為了等價線段總結(jié):因為截長補短常得線段相等,所以截長補短經(jīng)常用于證明三條線段間的數(shù)量關(guān)系,如AD=BC+EF【類題訓(xùn)練】7.如圖,在△ABC中,AB>AC,∠1=∠2,P為AD上任意一點(不與A,D重合),則AB﹣ACPB﹣PC(填“>”、“<”或“=”).8.(1)如圖1,在△ABC中,AB=4,AC=6,AD是BC邊上的中線,延長AD到點E使DE=AD,連接CE,把AB,AC,2AD集中在△ACE中,利用三角形三邊關(guān)系可得AD的取值范圍是;(2)如圖2,在△ABC中,AD是BC邊上的中線,點E,F(xiàn)分別在AB,AC上,且DE⊥DF,求證:BE+CF>EF;(3)如圖3,在四邊形ABCD中,∠A為鈍角,∠C為銳角,∠B+∠ADC=180°,DA=DC,點E,F(xiàn)分別在BC,AB上,且∠EDF=∠ADC,連接EF,試探索線段AF,EF,CE之間的數(shù)量關(guān)系,并加以證明.9.如圖,△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB,AD、CE相交于點P(1)求∠CPD的度數(shù);(2)若AE=3,CD=7,求線段AC的長.10.如圖,△ABC是等邊三角形,點D是邊BC上一個動點(點D不與點B,C重合),連接AD,點E在邊AC的延長線上,且DA=DE.(1)求證:∠BAD=∠EDC:(2)用等式表示線段CD,CE,AB之間的數(shù)量關(guān)系,并證明.11.如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.(1)△ABC≌△ADE嗎?為什么?(2)求∠FAE的度數(shù);(3)延長BF到G,使得FG=FB,試說明CD=2BF+DE.類型三整體旋轉(zhuǎn)—共線—再全等【知識點睛】整體旋轉(zhuǎn)三角形得全等輔助線方法規(guī)律總結(jié)基本圖形輔助線條件與結(jié)論特別提醒將△ABE繞點A逆時針旋轉(zhuǎn)至AB與AD重合,點E的對應(yīng)點記為點G條件:正方形ABCD,∠EAF=45°結(jié)論:①△AEF≌△AGF(SAS)②EF=BE+DF此種類型的輔助線其實是在證明“正方形的半角模型”;但是這種輔助線也可以應(yīng)用在等邊三角形的問題中,此時旋轉(zhuǎn)角度為60°或者120°【類題訓(xùn)練】9.如圖,在四邊形ABCD中,∠ADC=∠B=90°,DE⊥AB,垂足為E,且DE=EB=5,則四邊形ABCD的面積.10.已知正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長線)于點M,N,AH⊥MN于點H.(1)如圖①,當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM=DN時,請你直接寫出AH與AB的數(shù)量關(guān)系:;(2)如圖②,當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM≠DN時,(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請寫出理由,如果成立請證明;(3)如圖③,已知∠MAN=45°,AH⊥MN于點H,且MH=2,AH=6,求NH的長.(可利用(2)得到的結(jié)論)11.已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長線)于點M、N.(1)如圖1,當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM=DN時,有BM+DN=MN.當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM≠DN時,如圖2,請問圖1中的結(jié)論還是否成立?如果成立,請給予證明,如果不成立,請說明理由;(2)當(dāng)∠MAN繞點A旋轉(zhuǎn)到如圖3的位置時,線段BM,DN和MN之間有怎樣的等量關(guān)系?請寫出你的猜想,并證明.12.如圖,在等邊三角形ABC中,點P為△ABC內(nèi)一點,連接AP,BP,CP,將線段AP繞點A順時針旋轉(zhuǎn)60°得到AP',連接PP',BP'.(1)用等式表示BP'與CP的數(shù)量關(guān)系,并證明;(2)當(dāng)∠BPC=120°時,①直接寫出∠P'BP的度數(shù)為;②若M為BC的中點,連接PM,用等式表示PM與AP的數(shù)量關(guān)系,并證明.類型四連接線段——得全等【知識點睛】連接線段得△全等輔助線方法規(guī)律總結(jié)基本圖形輔助線條件與結(jié)論結(jié)論應(yīng)用連接AD條件:AB=AC,BD=CD結(jié)論:△ABD≌△ACD(SSS)此種類型的輔助線雖然最簡單,但是也最常見,常用來證明角相等【類題訓(xùn)練】13.如圖,已知:,,,,則(
)A. B. C.或 D.14.把正方形ABCD繞著點A,按順時針方向旋轉(zhuǎn)得到正方形AEFG,邊FG與BC交于點H(如圖).試問線段HG與線段HB相等嗎?請先觀察猜想,然后再證明你的猜想.【課后綜合練習(xí)】1.[方法呈現(xiàn)](1)如圖①,△ABC中,AD為中線,已知AB=3,AC=5,求中線AD長的取值范圍.解決此問題可以用如下方法:延長AD至點E,使DE=AD,連接CE,則易證△DEC≌△DAB,得到EC=AB=3,則可得AC﹣CE<AE<AC+CE,從而可得中線AD長的取值范圍是.[探究應(yīng)用](2)如圖②,在四邊形ABCD中,AB∥CD,點E是BC的中點,若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系,并寫出完整的證明過程.(3)如圖③,在四邊形ABCD中,AB∥CD,AF與DC的延長線交于點F,點E是BC的中點,若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.2.閱讀理解如圖①,△ABC中,D是BC中點,連接AD,直接回答S△ABD與S△ADC相等嗎?(S表示面積);應(yīng)用拓展(2)如圖②,已知梯形ABCD中,AD∥BC,E是AB的中點,連接DE、EC,試利用上題得到的結(jié)論說明S△DEC=S△ADE+S△EBC;解決問題(3)現(xiàn)有一塊如圖③所示的梯形試驗田,想種兩種農(nóng)作物做對比實驗,用一條過D點的直線,將這塊試驗田分割成面積相等的兩塊,畫出這條直線,并簡單說明另一點的位置.3.(1)如圖①,OP是∠MON的平分線,點A為OM上一點,點B為OP上一點.請你利用該圖形在ON上找一點C,使△COB≌△AOB,請在圖①畫出圖形.參考這個作全等三角形的方法,解答下列問題:(2)如圖②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點F.請你寫出FE與FD之間的數(shù)量關(guān)系,并說明理由;(3)如圖③,在△ABC中,如果∠ACB不是直角,而(1)中的其他條件不變,在(2)中所得結(jié)論是否仍然成立?請你直接作出判斷,不必說明理由.4.如圖甲,在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題(1)如果AB=AC,∠BAC=90°,①當(dāng)點D在線段BC上時(與點B不重合),如圖乙,線段CF、BD之
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貴陽職業(yè)技術(shù)學(xué)院《試驗設(shè)計與數(shù)據(jù)處理》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025上海市安全員-C證考試(專職安全員)題庫附答案
- 2025江蘇省安全員《B證》考試題庫及答案
- 2025海南省建筑安全員C證考試(專職安全員)題庫附答案
- 廣州中醫(yī)藥大學(xué)《形體訓(xùn)練(Ⅱ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州應(yīng)用科技學(xué)院《環(huán)境藝術(shù)專題設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州現(xiàn)代信息工程職業(yè)技術(shù)學(xué)院《運動解剖學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州鐵路職業(yè)技術(shù)學(xué)院《針織物設(shè)計與試織》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025四川建筑安全員B證(項目經(jīng)理)考試題庫
- 2025年福建建筑安全員《A證》考試題庫及答案
- 2024年股東股權(quán)繼承轉(zhuǎn)讓協(xié)議3篇
- 2025年中央歌劇院畢業(yè)生公開招聘11人歷年高頻重點提升(共500題)附帶答案詳解
- 北京市高校課件 開天辟地的大事變 中國近代史綱要 教學(xué)課件
- 監(jiān)事會年度工作計劃
- 2024年認證行業(yè)法律法規(guī)及認證基礎(chǔ)知識
- SVG無功補償培訓(xùn)
- 新生兒聽力篩查技術(shù)規(guī)范衛(wèi)生部2010年版
- 大貓英語分級閱讀 六級1 Arthur's Fantastic Party課件
- SCA自動涂膠系統(tǒng)培訓(xùn)講義
- LEC法取值標準對照表
- 華中數(shù)控車床編程及操作
評論
0/150
提交評論