山東省威海市文登區(qū)達標名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
山東省威海市文登區(qū)達標名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
山東省威海市文登區(qū)達標名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
山東省威海市文登區(qū)達標名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
山東省威海市文登區(qū)達標名校2024屆中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省威海市文登區(qū)達標名校2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.函數(shù)(為常數(shù))的圖像上有三點,,,則函數(shù)值的大小關(guān)系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y12.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米3.若一元二次方程x2﹣2x+m=0有兩個不相同的實數(shù)根,則實數(shù)m的取值范圍是()A.m≥1 B.m≤1 C.m>1 D.m<14.一組數(shù)據(jù)8,3,8,6,7,8,7的眾數(shù)和中位數(shù)分別是()A.8,6B.7,6C.7,8D.8,75.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°6.以坐標原點為圓心,以2個單位為半徑畫⊙O,下面的點中,在⊙O上的是()A.(1,1) B.(,) C.(1,3) D.(1,)7.如圖,平行四邊形ABCD的周長為12,∠A=60°,設(shè)邊AB的長為x,四邊形ABCD的面積為y,則下列圖象中,能表示y與x函數(shù)關(guān)系的圖象大致是()A. B. C. D.8.如圖,△ABC中,若DE∥BC,EF∥AB,則下列比例式正確的是()A. B.C. D.9.觀察下列圖形,則第n個圖形中三角形的個數(shù)是()A.2n+2 B.4n+4 C.4n﹣4 D.4n10.如圖,把一塊含有45°角的直角三角板的兩個頂點放在直尺的對邊上.如果∠1=20°,那么∠2的度數(shù)是()A.30° B.25°C.20° D.15°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在菱形ABCD中,AB=,∠B=120°,點E是AD邊上的一個動點(不與A,D重合),EF∥AB交BC于點F,點G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.12.不等式5x﹣3<3x+5的非負整數(shù)解是_____.13.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.14.如圖,A,B兩點被池塘隔開,不能直接測量其距離.于是,小明在岸邊選一點C,連接CA,CB,分別延長到點M,N,使AM=AC,BN=BC,測得MN=200m,則A,B間的距離為_____m.15.已知點P(2,3)在一次函數(shù)y=2x-m的圖象上,則m=_______.16.廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為y=-140x17.不等式組的解集是__.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB為⊙O直徑,過⊙O外的點D作DE⊥OA于點E,射線DC切⊙O于點C、交AB的延長線于點P,連接AC交DE于點F,作CH⊥AB于點H.(1)求證:∠D=2∠A;(2)若HB=2,cosD=,請求出AC的長.19.(5分)某蔬菜生產(chǎn)基地的氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統(tǒng)從開啟到關(guān)閉后,大棚內(nèi)的溫度y(℃)與時間x(h)之間的函數(shù)關(guān)系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關(guān)閉階段.請根據(jù)圖中信息解答下列問題:求這天的溫度y與時間x(0≤x≤24)的函數(shù)關(guān)系式;求恒溫系統(tǒng)設(shè)定的恒定溫度;若大棚內(nèi)的溫度低于10℃時,蔬菜會受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關(guān)閉多少小時,才能使蔬菜避免受到傷害?20.(8分)如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F.(1)求證:;(2)連接BD,請你判斷AC與BD有什么位置關(guān)系?并說明理由;(3)若PE=1,求△PBD的面積.21.(10分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點,點B在數(shù)軸的正半軸上運動,點B在數(shù)軸上所表示的數(shù)為m.當半圓D與數(shù)軸相切時,m=.半圓D與數(shù)軸有兩個公共點,設(shè)另一個公共點是C.①直接寫出m的取值范圍是.②當BC=2時,求△AOB與半圓D的公共部分的面積.當△AOB的內(nèi)心、外心與某一個頂點在同一條直線上時,求tan∠AOB的值.22.(10分)甲、乙兩公司各為“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人數(shù)是甲公司人數(shù)的,問甲、乙兩公司人均捐款各多少元?23.(12分)先化簡,再求值:(1﹣)÷,其中a=﹣1.24.(14分)為了傳承中華優(yōu)秀傳統(tǒng)文化,市教育局決定開展“經(jīng)典誦讀進校園”活動,某校團委組織八年級100名學(xué)生進行“經(jīng)典誦讀”選拔賽,賽后對全體參賽學(xué)生的成績進行整理,得到下列不完整的統(tǒng)計圖表.組別分數(shù)段頻次頻率A60≤x<70170.17B

70≤x<80

30

aC

80≤x<90

b

0.45D

90≤x<100

8

0.08請根據(jù)所給信息,解答以下問題:表中a=______,b=______;請計算扇形統(tǒng)計圖中B組對應(yīng)扇形的圓心角的度數(shù);已知有四名同學(xué)均取得98分的最好成績,其中包括來自同一班級的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機選出兩名參加市級比賽,請用列表法或畫樹狀圖法求甲、乙兩名同學(xué)都被選中的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解題分析】試題解析:∵函數(shù)y=(a為常數(shù))中,-a1-1<0,∴函數(shù)圖象的兩個分支分別在二、四象限,在每一象限內(nèi)y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.2、D【解題分析】

在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據(jù)此即可求出AB的長.【題目詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【題目點撥】本題考查了解直角三角形的應(yīng)用--仰角、俯角問題,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.3、D【解題分析】分析:根據(jù)方程的系數(shù)結(jié)合根的判別式△>0,即可得出關(guān)于m的一元一次不等式,解之即可得出實數(shù)m的取值范圍.詳解:∵方程有兩個不相同的實數(shù)根,∴解得:m<1.故選D.點睛:本題考查了根的判別式,牢記“當△>0時,方程有兩個不相等的實數(shù)根”是解題的關(guān)鍵.4、D【解題分析】試題分析:根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.把這組數(shù)據(jù)從小到大排列:3,6,7,7,8,8,8,8出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是8;最中間的數(shù)是7,則這組數(shù)據(jù)的中位數(shù)是7考點:(1)眾數(shù);(2)中位數(shù).5、B【解題分析】試題分析:根據(jù)∠AOD=20°可得:∠AOC=70°,根據(jù)題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算6、B【解題分析】

根據(jù)點到圓心的距離和半徑的數(shù)量關(guān)系即可判定點與圓的位置關(guān)系.【題目詳解】A選項,(1,1)到坐標原點的距離為<2,因此點在圓內(nèi),B選項(,)到坐標原點的距離為=2,因此點在圓上,C選項(1,3)到坐標原點的距離為>2,因此點在圓外D選項(1,)到坐標原點的距離為<2,因此點在圓內(nèi),故選B.【題目點撥】本題主要考查點與圓的位置關(guān)系,解決本題的關(guān)鍵是要熟練掌握點與圓的位置關(guān)系.7、C【解題分析】

過點B作BE⊥AD于E,構(gòu)建直角△ABE,通過解該直角三角形求得BE的長度,然后利用平行四邊形的面積公式列出函數(shù)關(guān)系式,結(jié)合函數(shù)關(guān)系式找到對應(yīng)的圖像.【題目詳解】如圖,過點B作BE⊥AD于E.∵∠A=60°,設(shè)AB邊的長為x,∴BE=AB?sin60°=x.∵平行四邊形ABCD的周長為12,∴AB=(12-2x)=6-x,∴y=AD?BE=(6-x)×x=﹣(0≤x≤6).則該函數(shù)圖像是一開口向下的拋物線的一部分,觀察選項,C符合題意.故選C.【題目點撥】本題考查了二次函數(shù)的圖像,根據(jù)題意求出正確的函數(shù)關(guān)系式是解題的關(guān)鍵.8、C【解題分析】

根據(jù)平行線分線段成比例定理找準線段的對應(yīng)關(guān)系,對各選項分析判斷后利用排除法求解.【題目詳解】解:∵DE∥BC,∴=,BD≠BC,∴≠,選項A不正確;∵DE∥BC,EF∥AB,∴=,EF=BD,=,∵≠,∴≠,選項B不正確;∵EF∥AB,∴=,選項C正確;∵DE∥BC,EF∥AB,∴=,=,CE≠AE,∴≠,選項D不正確;故選C.【題目點撥】本題考查了平行線分線段成比例定理;熟練掌握平行線分線段成比例定理,在解答時尋找對應(yīng)線段是關(guān)?。?、D【解題分析】試題分析:由已知的三個圖可得到一般的規(guī)律,即第n個圖形中三角形的個數(shù)是4n,根據(jù)一般規(guī)律解題即可.解:根據(jù)給出的3個圖形可以知道:第1個圖形中三角形的個數(shù)是4,第2個圖形中三角形的個數(shù)是8,第3個圖形中三角形的個數(shù)是12,從而得出一般的規(guī)律,第n個圖形中三角形的個數(shù)是4n.故選D.考點:規(guī)律型:圖形的變化類.10、B【解題分析】根據(jù)題意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,二、填空題(共7小題,每小題3分,滿分21分)11、1或【解題分析】

由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到EF∥AB,于是得到EF=AB=,當△EFG為等腰三角形時,①EF=GE=時,于是得到DE=DG=AD÷=1,②GE=GF時,根據(jù)勾股定理得到DE=.【題目詳解】解:∵四邊形ABCD是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四邊形ABFE是平行四邊形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,當△EFG為等腰三角形時,當EF=EG時,EG=,如圖1,過點D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,GE=GF時,如圖2,過點G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,過點D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,當EF=FG時,由∠EFG=180°-2×30°=120°=∠CFE,此時,點C和點G重合,點F和點B重合,不符合題意,故答案為1或.【題目點撥】本題考查了菱形的性質(zhì),平行四邊形的性質(zhì),等腰三角形的性質(zhì)以及勾股定理,熟練掌握各性質(zhì)是解題的關(guān)鍵.12、0,1,2,1【解題分析】5x﹣1<1x+5,移項得,5x﹣1x<5+1,合并同類項得,2x<8,系數(shù)化為1得,x<4所以不等式的非負整數(shù)解為0,1,2,1;故答案為0,1,2,1.【題目點撥】根據(jù)不等式的基本性質(zhì)正確解不等式,求出解集是解答本題的關(guān)鍵.13、5【解題分析】

已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應(yīng)等于AB的一半.【題目詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【題目點撥】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關(guān)鍵.14、1【解題分析】

∵AM=AC,BN=BC,∴AB是△ABC的中位線,∴AB=MN=1m,故答案為1.15、1【解題分析】

根據(jù)待定系數(shù)法求得一次函數(shù)的解析式,解答即可.【題目詳解】解:∵一次函數(shù)y=2x-m的圖象經(jīng)過點P(2,3),∴3=4-m,解得m=1,故答案為:1.【題目點撥】此題主要考查了一次函數(shù)圖象上點的坐標特征,關(guān)鍵是根據(jù)待定系數(shù)法求得一次函數(shù)的解析式.16、85【解題分析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有-1即x2=80,x1所以兩盞警示燈之間的水平距離為:|17、2≤x<1【解題分析】

分別解兩個不等式得到x<1和x≥2,然后根據(jù)大小小大中間找確定不等數(shù)組的解集.【題目詳解】解:,解①得x<1,解②得x≥2,所以不等式組的解集為2≤x<1.故答案為2≤x<1.【題目點撥】本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取小;大小小大中間找;大大小小找不到.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)AC=4.【解題分析】

(1)連接,根據(jù)切線的性質(zhì)得到,根據(jù)垂直的定義得到,得到,然后根據(jù)圓周角定理證明即可;(2)設(shè)的半徑為,根據(jù)余弦的定義、勾股定理計算即可.【題目詳解】(1)連接.∵射線切于點,.,,,,,由圓周角定理得:,;(2)由(1)可知:,,,,,設(shè)的半徑為,則,在中,,,,∴由勾股定理可知:,.在中,,由勾股定理可知:.【題目點撥】本題考查了切線的性質(zhì)、圓周角定理以及解直角三角形,掌握切線的性質(zhì)定理、圓周角定理、余弦的定義是解題的關(guān)鍵.19、(1)y關(guān)于x的函數(shù)解析式為;(2)恒溫系統(tǒng)設(shè)定恒溫為20°C;(3)恒溫系統(tǒng)最多關(guān)閉10小時,蔬菜才能避免受到傷害.【解題分析】分析:(1)應(yīng)用待定系數(shù)法分段求函數(shù)解析式;(2)觀察圖象可得;(3)代入臨界值y=10即可.詳解:(1)設(shè)線段AB解析式為y=k1x+b(k≠0)∵線段AB過點(0,10),(2,14)代入得解得∴AB解析式為:y=2x+10(0≤x<5)∵B在線段AB上當x=5時,y=20∴B坐標為(5,20)∴線段BC的解析式為:y=20(5≤x<10)設(shè)雙曲線CD解析式為:y=(k2≠0)∵C(10,20)∴k2=200∴雙曲線CD解析式為:y=(10≤x≤24)∴y關(guān)于x的函數(shù)解析式為:(2)由(1)恒溫系統(tǒng)設(shè)定恒溫為20°C(3)把y=10代入y=中,解得,x=20∴20-10=10答:恒溫系統(tǒng)最多關(guān)閉10小時,蔬菜才能避免受到傷害.點睛:本題為實際應(yīng)用背景的函數(shù)綜合題,考查求得一次函數(shù)、反比例函數(shù)和常函數(shù)關(guān)系式.解答時應(yīng)注意臨界點的應(yīng)用.20、(1)見解析;(2)AC∥BD,理由見解析;(3)【解題分析】

(1)直接利用相似三角形的判定方法得出△BCE∽△DCP,進而得出答案;

(2)首先得出△PCE∽△DCB,進而求出∠ACB=∠CBD,即可得出AC與BD的位置關(guān)系;

(3)首先利用相似三角形的性質(zhì)表示出BD,PM的長,進而根據(jù)三角形的面積公式得到△PBD的面積.【題目詳解】(1)證明:∵△BCE和△CDP均為等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:結(jié)論:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如圖所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均為等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴,即,∴BD=,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+1=5,∴PM=5sin45°=∴△PBD的面積S=BD?PM=××=.【題目點撥】本題考查相似三角形的性質(zhì)和判定,解題的關(guān)鍵是掌握相似三角形的性質(zhì)和判定.21、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解題分析】

(1)根據(jù)題意由勾股定理即可解答(2)①根據(jù)題意可知半圓D與數(shù)軸相切時,只有一個公共點,和當O、A、B三點在數(shù)軸上時,求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據(jù)題意如圖1,當OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,列出方程求解即可解答如圖2,當OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,列出方程求解即可解答【題目詳解】(1)當半圓與數(shù)軸相切時,AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)軸相切時,只有一個公共點,此時m=,當O、A、B三點在數(shù)軸上時,m=7+4=11,∴半圓D與數(shù)軸有兩個公共點時,m的取值范圍為.故答案為.②如圖,連接DC,當BC=2時,∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當OB=AB時,內(nèi)心、外心與頂點B在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當OB=OA時,內(nèi)心、外心與頂點O在同一條直線上,作AH⊥OB于點H,設(shè)BH=x,則72﹣(4﹣x)2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論