![IRENA-全球制氫用水報(bào)告 Water for hydrogen production_第1頁(yè)](http://file4.renrendoc.com/view10/M00/01/20/wKhkGWWAaq2AB_FNAAEBaVOzVBk945.jpg)
![IRENA-全球制氫用水報(bào)告 Water for hydrogen production_第2頁(yè)](http://file4.renrendoc.com/view10/M00/01/20/wKhkGWWAaq2AB_FNAAEBaVOzVBk9452.jpg)
![IRENA-全球制氫用水報(bào)告 Water for hydrogen production_第3頁(yè)](http://file4.renrendoc.com/view10/M00/01/20/wKhkGWWAaq2AB_FNAAEBaVOzVBk9453.jpg)
![IRENA-全球制氫用水報(bào)告 Water for hydrogen production_第4頁(yè)](http://file4.renrendoc.com/view10/M00/01/20/wKhkGWWAaq2AB_FNAAEBaVOzVBk9454.jpg)
![IRENA-全球制氫用水報(bào)告 Water for hydrogen production_第5頁(yè)](http://file4.renrendoc.com/view10/M00/01/20/wKhkGWWAaq2AB_FNAAEBaVOzVBk9455.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Waterforhydrogenproduction
?IRENA2023
Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.
ISBN:978-92-9260-526-1
CITATION:IRENAandBluerisk(2023),Waterforhydrogenproduction,InternationalRenewableEnergyAgency,Bluerisk,AbuDhabi,UnitedArabEmirates.
ABOUTIRENA
TheInternationalRenewableEnergyAgency(IRENA)isanintergovernmentalorganisationthatsupportscountriesintheirtransitiontoasustainableenergyfutureandservesastheprincipalplatformforinternationalco-operation,acentreofexcellence,andarepositoryofpolicy,technology,resourceandfinancialknowledgeonrenewableenergy.IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergy,geothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurityandlow-carboneconomicgrowthandprosperity.
ABOUTBLUERISK
Blueriskisawaterstrategyanddataanalyticsconsultancyfocusedonenhancingresilienceandreducingriskinthefaceofemergingwaterchallenges.
Bluerisk
ACKNOWLEDGEMENTS
ThereportwasdevelopedundertheguidanceofUteCollieracting-Director,IRENAKnowledgePolicyandFinanceCentreandauthoredbyEmanueleBianco(IRENA),TianyiLuo(Bluerisk),andDivyamNagpal(ex-IRENA).
IRENAcolleaguesAnn-KathrinLipponer,LuisJaneiroandFranciscoBoshellprovidedvaluableinput.
AnetaCornell(Ecolab),LorenzoRosa(StanfordUniversity),ChaoZhangandYinshuangXia(TongjiUniversity),providedtechnicalcontributionstothereport.MarinaMelnikovaandYuryMelnikov(Mylonastars)providedusefulcontributionsandobservations.
Thereportbenefitedfromthereviewsandcommentsofexperts,includingAlistairWyness,RachaelRaid(BP),NitinBassi(CEEW),YuZhang,ZiyanSha(ChinaHydrogenEnergyIndustryPromotionAssociation),CristianCarraretto,RobertoGonzales(EBRD),AnetaCornell,EmilioTenuta(Ecolab),MassimoSantarelli(PolytechnicUniversityofTurin),AlejandroLongueira(RolandBerger)andSmeetaFokeer(UNIDO).
PublicationsupportwasprovidedbyFrancisFieldandStephanieClarke(IRENA).ThereportwaseditedbyFayreMakeig,withdesignprovidedbyElkanodata.
Forfurtherinformationortoprovidefeedback:publications@
DISCLAIMER
Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,dataorotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.
TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.
Tableofcontents
Glossary5
Executivesummary
6
Chapter1
Introductiontothehydrogen-waternexus
14
Chapter2
Areviewofwaterquantityrequirements
incommercial-scalehydrogenproduction
21
Chapter3
Waterfootprintandrisksofglobalhydrogenproduction
32
Chapter4
Deep-diveanalysesofnorthernChina,theGulfandEurope
42
Chapter5
ConclusionsandRecommendations
54
References
59
Appendix
63
-2-
Figures
FigureS1
Acomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnology
7
FigureS2
Currentandprojectedfreshwaterwithdrawalforglobal
hydrogenproduction,bypathway
9
Figure2.1
Schematicsofprocess-specificwaterwithdrawalandconsumption
inlitresfortypicalhydrogentechnologiestogenerate1kilogrammeofhydrogen
24
Figure2.2
Shareofthewaterwithdrawalneedsofproductionandcoolingintheoverallwaterdemandofhydrogenproductionexamples
26
Figure2.3
Acomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnology
28
Figure2.4
Relationsbetweenhydrogenconversionefficiencyandwaterwithdrawalandconsumptionintensitiesofatypicalelectrolysisproject
30
Figure2.5
Annualwaterwithdrawaloftypicalhydrogenproductionprojects,thermalpowerplantsandmunicipalities
31
Figure3.1
Currentandprojectedfutureglobalhydrogenproductionunderthe1.5°CScenario
33
Figure3.2
Currentandprojectedfreshwaterwithdrawalforglobal
hydrogenproduction,bypathway
34
Figure3.3
Freshwaterforhydrogenproductionandcooling,todayto2050
36
Figure3.4
Globalwaterstressconditionsandgreenandbluehydrogenprojectlocationsfor2040
38
Figure3.5
Distributionofglobaloperationalandplannedgreenandbluehydrogenproductioncapacitiesbywaterstresslevel,
todayandin2040
40
Figure3.6
Distributionofglobaloperationalandplannedgreenandbluehydrogenproductioncapacitiesbywaterstresslevel
andregionin2040
41
Figure4.1
Hydrogen-producingcoalchemicalplantsandlevels
ofwaterstressintheYellowRiverBasin
42
Figure4.2
Annualwaterwithdrawalandconsumptionduetocoal-basedhydrogenproductionintheYellowRiverBasin,byprovince
43
-3-
Figure4.3Distributionofhydrogen-producingcoalchemicalplants44
intheYellowRiverBasinbycurrentwaterstresslevel
Figure4.4Annualwaterwithdrawalandconsumptionrequirements45
ofcoal-basedhydrogenproductionintheYellowRiver
Basinunderfourscenarios
Figure4.5HydrogenplantsintheGulfCooperationCouncilcountries46
andtheregion’scurrentwaterstressconditions
Figure4.6Currentandprojectedfuturehydrogenproduction47
oftheGulfCooperationCouncilcountries
Figure4.7Currentandprojectedseawaterwithdrawalsanddesalinated48
seawaterrequirementsofhydrogenproduction
intheGulfCooperationCouncilcountries
Figure4.8AnoverviewofhydrogenprojectsinEurope
49
Figure4.9Amapofwaterstressandoperationalandplanned
50
hydrogenprojectsbyproductiontechnologyinEurope
Figure4.10ThedistributionofEurope’soperationalandplanned51
hydrogenprojectsbywaterstresslevelsin2040
Figure4.11CurrentandprojectedhydrogenproductioninEurope
52
Figure4.12Currentandprojectedfuturefreshwaterwithdrawaland
53
consumptionrequirementsofhydrogenproductioninEurope
Tables
Table2.1Asummaryofwaterwithdrawalandconsumptionintensities29
byhydrogenproductiontechnology
Table3.1Currentandprojectedfreshwaterwithdrawalandconsumption37
forhydrogenproduction(billioncubicmetres),todayto2050
TableA1Waterwithdrawalandconsumptionintensitydatasources
63
Boxes
Box3.1HydrogenintheWorldEnergyTransitionsOutlook
32
Box3.2Whatiswaterstress?
39
-4-
Abbreviations
AEM
anionexchangemembrane
ATR
auto-thermalreforming
CCS
carboncaptureandstorage
CCUS
carboncapture,utilisationandstorage
GCCGulfCooperationCouncil
GHGgreenhousegases
H2hydrogen
PEMprotonexchangemembrane
PVphotovoltaic
SDG
SustainableDevelopmentGoals
SMR
steammethanereforming
SOEC
solidoxideelectrolysercells
Unitsofmeasure
GWgigawatt
kgkilogram
ktkilotonne
Llitre
m3cubicmetre
Mtmegatonne
-5-
Glossary
Blowdownwater:Waterdrainedintentionallyfromcoolingsystemstopreventmineralbuild-up.
Cycleofconcentration:Ameasureofthebuild-upofdissolvedmineralsincoolingsystems.Thecycleiscalculatedbycomparingtheconcentrationofaparticulardissolvedsolidinthewatercomingoutofacoolingsystemtoitsconcentrationinthewaterflowingintothesystem.
Deionisedwater:Atypeofhighlypurifiedwaterthatdoesnotcontainanyatoms,ionsormolecules.Deionisationremovesdissolvedsubstanceslikesodiumchloride,minerals,carbondioxide,organicpollutantsandvariousothercontaminantsfromwater.
Makeupwater:Thewateraddedbackintoacoolingsystemtoreplacewaterlostduetoevaporation,leaks,etc.
Permeaterate:Inmembrane-basedwatertreatmentsystems,theratioofthevolumeofwaterpassingthroughthemembranetothetotalquantityofrawwater.
Waterwithdrawal:Measuredbythequantityofwaterwithdrawnfromasource(e.g.river,lake,groundwater)foruse.
Waterwithdrawal/consumptionintensity:Thequantityofwaterwithdrawnfororconsumedinthegenerationofaunitofaproduct(e.g.amegawatthourofenergy,amegatonneofhydrogen).
Waterconsumption:Theportionofwithdrawnwaterthatisnotreturnedtothesource.
Waterstress:Measuredusingtheratioofthetotalwaterwithdrawaltotheavailablerenewablefreshwatersupply.Itshouldbecalculatedatawatershedscale.Waterstressposessignificantriskstohumanandenvironmentalwell-beingandisaproxyforwatercompetitionamongsectorsanduses.
EXECUTIVESUMMARY
-6-
Executivesummary
Theenergysectoristhelargestwateruserofallindustrialsectors.Waterisrequiredinmanyofitsprocesses,fromfuelextractiontoelectricitygeneration.AsseenintherecentnuclearpowerplantshutdownsinEuropein2022,watershortagescansignificantlydisruptthesector.Andthedisruptionsarelikelytocontinueandtobecomeevenmorefrequent,especiallyasextremeweathereventsintensifyamidachangingclimate.Toaddresstherisingclimaterisks,theenergysectorisalreadyestablishinggoodpracticesforintegratingwaterconsiderationsintoplanning.Thesectorcanmitigateitswaterrisksbytransitioningtorenewableenergysources,whichconsumelesswaterthantraditionalfossilfuels.
Cleanhydrogenhasemergedasaviablealternativeinthefightagainstclimatechange.Hydrogenisagamechanger,especiallyfor“hardtoabate”,suchassteelmaking,chemicalproduction,aviation,shippingandtrucktransport.Assessingthewateruseimplicationsofhydrogenproduction,especiallyinwater-stressedareas,isessentialinmanagingpotentialdisruptionstoproduction.
Allhydrogenproductiontechnologiesrequirewaterasaninput.Waterisneedednotonlyinproductionbutalsoforcooling.Thewithdrawalandconsumptionofwaterforcleanhydrogenproductionhavebeendebated,yettoooftenthediscussionsarenotinformedbyin-depthknowledgeofthesestill-nascenttechnologies.
Thisreport,compiledbytheInternationalRenewableEnergyAgency(IRENA)andBluerisk,seekstoanswersomeofthesequestions.
Howmuchwaterdoesahydrogenplantactuallyconsume?
Thisreportreviewsthewaterwithdrawalandconsumptionrequirementsofvarioushydrogenproductiontechnologiesindetail.Datahavebeensourcedfrominterviewswithindustryexpertsandareviewofexistingliterature,sheddinglightonthewaterimplicationsofscalingupcleanhydrogenproduction.AveragewaterwithdrawalandconsumptionintensityandrangesarevisualisedinFigureS1.
Greenhydrogenisthemostwaterefficientofallcleanhydrogentypes.Itisfoundthatonaverage,protonexchangemembrane(PEM)electrolysishasthelowestwaterconsumptionintensityatabout17.5litresperkilogrammeofhydrogen(L/kg).AlkalineelectrolysisfollowsPEMelectrolysis,withawaterconsumptionintensityof22.3L/kg.Thesemaybecomparedwithsteammethanereforming–carboncapture,utilisationandstorage(SMR-CCUS),at32.2L/kg,andautothermalreforming(ATR)-CCUSat24.2L/kg.
WATERFORHYDROGENPRODUCTION
-7-
FIGURES1Acomparisonofaveragewaterwithdrawalandconsumptionintensitiesbyhydrogenproductiontechnology
Averagewaterintensity(L/kg)
Coalgasi?cation
49.8
31.0
Naturalgas-SMR
20.0
17.5
Coalgasi?cation-CCUS
80.2
49.4
Naturalgas-SMR-CCUS
36.732.2
Naturalgas-ATR-CCUS
30.824.2
Electrolysis-Alkaline
32.2
22.3
Electrolysis-PEM
25.717.5
WithdrawalConsumption
Note:Tapwater(orsourceswithsimilarwaterquality)is(are)usedorassumedtobethewatersource(s)behindthesedatapoints.Forbluehydrogen,thecoolingrequirementsforCCUSsystemsareincluded.ForPEMandATR,availabledatapointsarelimitedsincethesetechnologiesarerelativelynew–thusthemuchsmallerrangesofvalues.ATR=autothermalreforming;CCUS=carboncapture,utilisationandstorage;kg=kilogramme;L=litre;PEM=protonexchangemembrane;SMR=steammethanereforming.
Coalgasificationisbyfarthemostwaterintensiveofavailabletechnologies;itwouldbeabout60%moreintensiveifequippedwithCCUS.Coalgasificationhasawaterwithdrawalrequirementofabout50L/kgandconsumes31L/kg,onaverage–roughlytwicePEM’swaterwithdrawalandconsumptionrequirements.EquippedwithCCUS,coalgasification’swithdrawalaswellasconsumptionrequirementscould furtherincreaseto80.2and49.4L/kg,respectively.Acoalgasificationhydrogenplantproducing237kilotonnes(kt)ofhydrogenperyearandequippedwithCCUSwouldwithdrawabout19millioncubicmetres(m3)ofwaterannually;thisvolumeofwatercouldsupporthalfthewaterdemandofthecityofLondonforanentireyear.
EXECUTIVESUMMARY
-8-
Waterisrequiredasaninputforproductionandasacoolingmediumforalltypesofhydrogenproduction.Dependingonthetechnology,theshareofwithdrawalforcoolingcanrangefrom14%to92%.Theshareofwaterwithdrawalforcoolingisthelowestforgreyhydrogenproduction,atabout14%.Greenandbrownhydrogen’ssharesare56%and52%,respectively.Bluehydrogenproductionrequiresmorewaterforcooling,duetothesignificantwaterrequirementsofCCUSsystemsforheattransfer.Coolingcanaccountforupto92%ofthetotalwithdrawalrequirementofbluehydrogen,accordingtodatafromtheNationalEnergyTechnologyLaboratoryintheUnitedStates.However,moreevidenceisneededbeforeageneralproduction-coolingratiocanbedeterminedwithoutdispute.
Forevery1percentagepointincreaseinelectrolysisefficiency,thewaterwithdrawalaswellasconsumptionrequirementsofgreenhydrogenproductionlessenbyabout2%.Thisisprimarilybecause,forthesametypeofhydrogenproductiontechnology,themoreenergyefficientthesystemis,thelesswasteheatneedstobetransferred;thismeanslesswaterisrequiredforcooling.
Whatwillbetheglobalimpactofcleanhydrogen?
Thisreportpresentsacomprehensiveanalysisofthewaterfootprintandrisksassociatedwithcurrentandprojectedfutureglobalhydrogenproduction.TheanalysisisbasedonIRENA’s1.5°CScenario,whichprojectssubstantialgrowthinhydrogenproductionby2050.
WATERFORHYDROGENPRODUCTION
-9-
Annualfreshwaterwithdrawal
(billionm3)
Today,about2.2billionm3offreshwateriswithdrawnforglobalhydrogenproductioneveryyear;thisaccountsfor0.6%oftheenergysector’stotalfreshwaterwithdrawal.AsillustratedinFigureS2,greyhydrogenproductionaccountsforabout59%oftheglobalfreshwaterwithdrawalforhydrogenproduction,brownhydrogen40%,andtherestisfromgreenandbluehydrogen.
Freshwaterwithdrawalsforglobalhydrogenproductioncouldmorethantripleby2040andincreasesix-foldby2050,comparedwithtoday.Drivenbythesignificantexpansionofglobaldemandforhydrogen,thetotalfreshwaterwithdrawalrequiredbyglobalhydrogenproductionisprojectedtobeabout7.3billionm3by2040and12.1billionm3by2050,factoringintechnologyadvancements.Hydrogenproduction’sshareoftotalfreshwaterwithdrawnfortheenergysectorcouldrisefrom0.6%todayto2.4%by2040.
FIGURES2Currentandprojectedfreshwaterwithdrawalforglobalhydrogenproduction,bypathway
14
11
7
4
0
12.1
0.6
7.3
3.2
11.5
2.2
1.3
0.9
4.1
2050
2040
Current
BrownH2GreyH2BlueH2GreenH2
Note:Tapwater(orwatersourceswithsimilarwaterquality)is(are)assumedtobethewatersource(s).Projecteddesalination-basedandseawater-cooledhydrogenproduction(e.g.intheGCCcountries)isexcluded.BlueH2includesSMR-CCUS,ATR-CCUSandcoal-CCUS,withtheshareofATR-CCUSassumedtograduallyincreaseto75%by2050.CoolinginblueH2productionincludesthecoolingdemandduetoCCUSsystems.GreenH2includesbothalkalineandPEMelectrolysiswiththeshareofPEMelectrolysisassumedtograduallyincreaseto75%by2050.Moderategradualincreasesinelectrolysisefficiency(7.5percentagepointsforalkalineelectrolysisand4.5percentagepointsforPEM-electrolysisoverthecomingthreedecades)areassumed.Forcalculationpurposes,thecoolingandproductionsharesofblueH2inCase2fromLewisetal.(2022)areapplied.ATR=autothermalreforming;CCUS=carboncapture,utilisationandstorage;H2=hydrogen;PEM=protonexchangemembrane;SMR=steammethanereforming.
EXECUTIVESUMMARY
-10-
Andthelocalimpact?
Althoughthewaterconsumedforhydrogenproductionwillnothaveasignificantimpactglobally,theimportanceofconsideringlocalwatercontextswhenplanninghydrogendevelopmentcannotbeoverstated,especiallychronicwaterriskssuchaswaterstress.
Morethan35%oftheglobalgreenandbluehydrogenproductioncapacity(inoperationandplanned)islocatedinhighlywater-stressedregions.UsingtheAqueductWaterRiskAtlas,thisreportassesseswaterstressconditionsinlocationswhereglobalgreenandbluehydrogenprojectsarealreadyoperatingorbeingplanned.KeyregionalfindingsrevealthatIndiaislikelytohave99%ofitshydrogencapacityinextremelywater-stressedareasby2040,whileChinaandtheEU-27alsofacesignificantwaterstresschallenges.TheUnitedStatesandotherGroupofTwenty(G20)countriesareexposedtowaterstresstovaryingdegrees.Hydrogenproductionunderwaterstressconditionswouldfacefrequentdisruption,besidesbeingexposedtotheriskofuncertaintiessurroundingenvironmentalregulations.
Thereportpresentsin-depthanalysesofthewaterchallengesfacedbythehydrogenproductionindustryinNorthernChina,theGulfCooperationCouncil(GCC)countriesandEurope.
WATERFORHYDROGENPRODUCTION
-11-
NorthernChina
CoalchemicalplantsinnorthernChinacontributesignificantlytothecountry’scurrenthydrogenproduction,buttheyrequirelargeamountsoffreshwatertooperate.Forexample,freshwaterwithdrawalsforhydrogenproductionintheprovinceofShanxiareestimatedtoaccountforover30%oftheprovince’soverallindustrialwaterwithdrawal.Mostofthesecoal-firedchemicalplantsarelocatedintheYellowRiverBasin,aregionwherewaterisextremelyscarce.Over70%oftheseplantsoperateinareasunderseverewaterstress,makingthemvulnerabletofluctuationsinwateravailabilityandchangingregulations.
Continuousexpansionofthehydrogenindustryisprojectedtodriveupwaterdemandsignificantlyby2030ifcoal-basedproductioncontinuestodominate.Thiswouldbringtheregion’swaterresourcesunderevenmorestress.Atransitiontoalternativetechnologiessuchasalkalineelectrolysisbecomescrucialtosustainablyaddressthesechallengessincethesetechnologiescanhelpmeetfuturedemandforhydrogen,whilereducingfreshwaterwithdrawalandconsumptiontolevelsevenbelowthoseseentoday.Alternativetechnologiesarethuspromisingsolutionstowater-relatedconcerns.
GulfCooperationCouncil
IntheGCCcountries,thepursuitofhydrogenproductionpresentsuniquechallengesandopportunities.Thesecountriesaremajorproducersofgreyhydrogenfromnaturalgasandofferscopeforatransitiontogreenhydrogenproduction.However,waterscarcityisasignificantissueintheGCCcountries,whichrelyheavilyondesalinatedwaterforhydrogenproductionandemployonce-throughcoolingsystems,raisingbothenvironmentalandeconomicconcerns,includingthermalandbrinepollutionandhighenergycosts.
Astheregionaimstoproducemorehydrogenby2040,atriplingofseawaterwithdrawalisprojected.Thisunderlinesanurgentneedforsustainablewatermanagementpractices.AtransitiontoalternativeproductiontechnologiessuchasalkalineandPEMelectrolysiscaneffectivelyreduceseawaterwithdrawalandthedemandfordesalinatedwater,addressingthesechallengeswhilemakingthehydrogenproductionindustrymoresustainableandresponsible.
Europe
ThepursuitofgreenhydrogeninEuropeispivotaltotheregion’sambitiousemissionmitigationgoals.However,Europefacesuniquechallenges,notablyincreasedoccurrencesofdroughts,whichimpactenergyproductionandexacerbatewaterstress.EventhoughEurope’shydrogenconsumptionisrelativelylowtoday,theregionhasarapidlygrowinghydrogenindustry,whichhasprojectslocatedacrossthecontinent,manynearcoastlinesandmajorrivers.Importantly,over23%ofEurope’sgreenhydrogenprojectsand14%ofitsbluehydrogenprojectsarelikelytobeinareasunderhighorextremelyhighwaterstressby2040,potentiallyincreasingthecompetitionforlocalwateruse.
AsEuropeshiftsitshydrogenproductionmix,thewaterdemandisexpectedtoincreasesignificantlyby2040.Thiswillplacenewpressuresonwaterresourcesinwater-stressedregions.Toensureasustainableandenvironmentallyresponsiblehydrogenindustry,Europemustintegratewaterconsiderationsintoitsenergyplanninganddevelopmentdecisionmaking.Itmustcarefullymanagewatercompetitionandpromotewater-efficienttechnologiessuchasPEM-basedelectrolysis.
EXECUTIVESUMMARY
-12-
So,whatshouldwedo?
Thereportendswithasetofrecommendations,basedontheresultsoftheanalysis.Theserecommendationsaredesignedtoreducetheexposureoffuturecleanhydrogenprojectstowater-shortage-relatedrisks.
→Greenhydrogenprojectsshouldbeprioritisedforfuturehydrogendevelopment.
→Water-relatedimpactsandpotentialrisksneedtobecarefullyevaluatedinhydrogenproductiondevelopmentplans,particularlyinwater-stressedregionswherestringentwateruseregulationsmustbeestablishedforthesector,andenforced.
→Retiringfossil-fuel-basedhydrogenplantsandreplacingthemwithgreenhydrogenshouldbeprioritisedinhydrogendevelopmentplans,particularlyinareaswhere
waterisalreadyscarce.
→Waterwithdrawalandconsumptionshouldbeconsideredasperformanceindicatorsofhydrogenproductionprojectsforpre-operationalevaluationpurposesandbe
meteredandmonitoredduringoperation.
→Regulationsandfinancialincentivesshouldfavourprojectsdemonstratinghigherefficiencyinenergyconversionandwaterconsumption.
→Moreinvestmentandresearcharerequiredtoimprovetheefficiencyofcommercial-scaleelectrolysersandreducetheconsumptionoffreshwaterforcooling.
→Hydrogenproductionprojectsinregionswherewaterisalreadyscarceshouldbeincentivisedtousewater-efficientcoolingtechnologiessuchasaircooling.
→Inpresentandfuturefreshwater-stressedcoastalareas,utilisingseawaterforhydrogenproductionandcoolingprocessesshouldbeincentivised,evenasregulationsforthermalpollutionandbrinemanagementareenforced.
-13-
WATERFORHYDROGENPRODUCTION
CHAPTER1:INTRODUCTIONTOTHEHYDROGEN-WATERNEXUS
-14-
Chapter1:Introductiontothe
hydrogen-waternexus
In2015,partiestotheParisAgreementconcurredthaturgentactiontodecarbonisetheirnationaleconomiesisnecessarytomitigatetheharmfuleffectsofclimatechange.Later,in2018,theIntergovernmentalPanelonClimateChangereleasedthereport“GlobalWarmingof1.5°C”,whichcalledforpolicymakerstointensifyandaccelerateeffortstomitigategreenhousegas(GHG)emissions,limittheglobaltemperatureriseandaddresstheclimatecrisis(IPCC,2018).
Accordingtothereport,thereisanarrowwindowofopportunitytoenactmeaningfulmeasurestopreventfurthertemperatureincreaseandaddresstheclimatecrisis.PolicymakersmustthereforestrengtheneffortstoreduceGHGemissionsfromalleconomicactivitiesasmuchaspossible.Solutionsthatreduceonlyasmallportionofemissionsareinadequate;itisnowcriticaltoprioritiseoptionsthatcanprovidesignificantemissionreductions.
Meanwhile,certainindustryandtransportsubsectorsareparticularlydifficulttodecarbonise,frombothatechnicalandeconomicperspective,andcorrespondingsolutionsarelimitedinnumber.Thesesectors,knownas“hard-to-abate”sectors,includesteelmaking,basicchemicalproduction,long-haulaviation,shippingandtrucktransport.
WATERFORHYDROGENPRODUCTION
-15-
Enterhydrogen,themostabundantchemicalintheuniverse.Around95megatonnes(Mt)ofhydrogenwereproducedfromfossilfuelsin2022–forrefineries,theproductionofbasicchemicalsandafewotheruses(IEA,2023).
Hydrogencanbeusedasafeedstock-toproducesteel,ammonia,methanol,fertilisersandsyntheticfuel,andtopowervehicles-orstored,fortimeswhenrenewablesareataseasonallow.TheInternationalRenewableEnergyAg
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)品銷售合同協(xié)議范本
- 個(gè)人土地租賃合同樣本
- 二手房交易合同正式版
- 業(yè)務(wù)合同之四:市場(chǎng)拓展與合作
- 二手房買賣合同定金協(xié)議書(shū)范本
- 個(gè)人住房抵押反擔(dān)保合同
- 個(gè)人借款合同分期還款協(xié)議書(shū)范本
- 人力資源公司招聘合同
- 個(gè)人住房貸款擔(dān)保合同細(xì)則
- 個(gè)人二手房買賣合同擔(dān)保補(bǔ)充協(xié)議
- 城市基礎(chǔ)設(shè)施修繕工程的重點(diǎn)與應(yīng)對(duì)措施
- GB 12710-2024焦化安全規(guī)范
- 【??途W(wǎng)】2024秋季校園招聘白皮書(shū)
- 2024-2025銀行對(duì)公業(yè)務(wù)場(chǎng)景金融創(chuàng)新報(bào)告
- 2025屆鄭州市高三一診考試英語(yǔ)試卷含解析
- 《我國(guó)個(gè)人所得稅制下稅收征管問(wèn)題研究》
- 腫瘤中醫(yī)治療及調(diào)養(yǎng)
- DB21-T 1720-2017海水源熱泵系統(tǒng)工程技術(shù)規(guī)程
- 組長(zhǎng)競(jìng)選課件教學(xué)課件
- 2022年公務(wù)員多省聯(lián)考《申論》真題(遼寧A卷)及答案解析
- 2024 ESC慢性冠脈綜合征指南解讀(全)
評(píng)論
0/150
提交評(píng)論