高二上學(xué)期數(shù)學(xué)周測(cè)試卷16_第1頁(yè)
高二上學(xué)期數(shù)學(xué)周測(cè)試卷16_第2頁(yè)
高二上學(xué)期數(shù)學(xué)周測(cè)試卷16_第3頁(yè)
高二上學(xué)期數(shù)學(xué)周測(cè)試卷16_第4頁(yè)
高二上學(xué)期數(shù)學(xué)周測(cè)試卷16_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高二上學(xué)期數(shù)學(xué)周測(cè)試卷16一、單選題(本大題共8小題,共40分。在每小題列出的選項(xiàng)中,選出符合題目的一項(xiàng))1.已知直線經(jīng)過(guò)點(diǎn)A(1,0)與點(diǎn)B(0,1),則直線AB的傾斜角為(

)A.45° B.60° C.120° D.135°2.已知向量a=(1,1,0),b=(?1,0,2),且ka+b與2a?bA.75 B.15 C.35 3.經(jīng)過(guò)直線2x+y?8=0和x?2y+1=0的交點(diǎn),且垂直于直線3x?2y+4=0的直線的方程是(

)A.2x+3y?13=0 B.2x+3y?12=0C.2x?3y=0 D.2x?3y?5=04.已知M,N分別是四面體OABC的棱OA,BC的中點(diǎn),點(diǎn)P在線段MN上,且MP=2PN設(shè)向量OA=a,OB=b,OCA.16a+16b+16c5.圓C1:x2+y2+2x+4y+1=0A.相交 B.內(nèi)切 C.外切 D.外離6.已知直線,若直線與連接、兩點(diǎn)的線段總有公共點(diǎn),則直線的傾斜角范圍為(

)A. B. C.D.7.曲線方程的化簡(jiǎn)結(jié)果為(

)A. B. C. D.8.橢圓的左右焦點(diǎn)分別為,點(diǎn)P在橢圓上,軸,且是等腰直角三角形,則該橢圓的離心率為(

)A. B. C. D.二、多選題(本大題共4小題,共20分。在每小題有多項(xiàng)符合題目要求,少選得2分,多選或錯(cuò)選不得分)9.若三條不同的直線l1:mx+2y+m+4=0,l2:x?y+1=0,l3:3x?y?5=0不能圍成一個(gè)三角形,則mA.?2 B.?6 C.?3 D.110.已知橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn)在直線上,則該橢圓的標(biāo)準(zhǔn)方程為(

)A. B. C. D.11.已知分別是雙曲線的上、下焦點(diǎn),以線段為直徑的圓M與雙曲線C的漸近線的一個(gè)交點(diǎn)為P,則(

)A.圓M的方程為 B.雙曲線C的離心率為C.雙曲線C的漸近線方程為 D.的面積為12.在棱長(zhǎng)為2的正方體ABCD?A1B1C1D則下列選項(xiàng)正確的是(

)A.D1D⊥AF B.直線A1GC.三棱錐G?AEF的體積為13 D.A1三、填空題(本大題共4小題,共20分)13.以拋物線的焦點(diǎn)為圓心,且過(guò)坐標(biāo)原點(diǎn)的圓的方程為.14.平行六面體ABCD?A1B1C∠DAB=90°,則|BD有一光線從點(diǎn)A(?3,5)射到直線l:3x?4y+4=0以后,再反射到點(diǎn)B(2,15),則入射光線所在直線的方程為

.已知點(diǎn)是橢圓上一點(diǎn),其左、右焦點(diǎn)分別為,,若銳角外接圓的半徑為4,則的面積是.四、解答題(本大題共6小題,共70分)17.(本小題10分)在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(?1,2),B(?(1)求BC邊上的高所在的直線方程;(2)求△ABC的面積.18.(本小題12分)已知以點(diǎn)C(?1,1)為圓心的圓與直線l:3x+4y+4=0相切.(1)求圓C的方程;(2)過(guò)點(diǎn)P(?2,3)作圓C的切線,求切線方程及切線長(zhǎng).19.(本小題12分)已知橢圓,左、右焦點(diǎn)分別為,過(guò)點(diǎn)作傾斜角為的直線交橢圓于兩點(diǎn).(1)求的長(zhǎng)和的周長(zhǎng);(2)求的面積.20.(本小題12分)如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD=DC=2,點(diǎn)E,F(xiàn)分別為AD,PC

(1)證明:DF//平面PBE?(2)求點(diǎn)F到平面PBE的距離.21.已知雙曲線的一條漸近線與直線垂直,且右頂點(diǎn)到該條漸近線的距離為.(1)求雙曲線的方程;(2)若直線與雙曲線交于、兩點(diǎn),線段的中點(diǎn)為,求直線的斜率.22.(本小題12分)在直三棱柱中,側(cè)面為正方形,,E,F(xiàn)分別為和的中點(diǎn),D為棱上的點(diǎn),.(1)證明:;(2)當(dāng)為何值時(shí),平面與平面所成的角的正弦值最小?并求出這個(gè)正弦值.參考答案題號(hào)123456789101112答案DABCCDDDABCADABDBD13.14.3

15.6x+17y?67=0

16.6.D【詳解】直線的方程可得,所以,直線過(guò)定點(diǎn),設(shè)直線的斜率為,直線的傾斜角為,則,因?yàn)橹本€的斜率為,直線的斜率為,因?yàn)橹本€經(jīng)過(guò)點(diǎn),且與線段總有公共點(diǎn),所以,即,因?yàn)?,所以或,故直線的傾斜角的取值范圍是.故選:D.7.D【詳解】曲線方程,所以其幾何意義是動(dòng)點(diǎn)到點(diǎn)和點(diǎn)的距離之和等于,符合橢圓的定義.點(diǎn)和點(diǎn)是橢圓的兩個(gè)焦點(diǎn).因此可得橢圓標(biāo)準(zhǔn)方程,其中,所以,所以所以曲線方程的化簡(jiǎn)結(jié)果為.故選D項(xiàng).8.D【詳解】由于軸,且是等腰直角三角形,所以,即,即.兩邊除以得,解得,故選D.9.ABC解:當(dāng)l1//l2時(shí),由m1當(dāng)l1//l3時(shí),由m3當(dāng)三線交于一點(diǎn)時(shí),聯(lián)立

x?y+1=03x?y?5=0,解得x=3y=4,代入mx+2y+m+4=0中,解得m=?310.AD【詳解】由題直線的橫截距為2,縱截距為,當(dāng)橢圓焦點(diǎn)在軸上時(shí),,則,此時(shí)橢圓的標(biāo)準(zhǔn)方程為;當(dāng)橢圓焦點(diǎn)在軸上時(shí),,則,此時(shí)橢圓的標(biāo)準(zhǔn)方程為.故選:AD.11.ABD【詳解】由雙曲線方程,得實(shí)半軸長(zhǎng),虛半軸長(zhǎng),半焦距,圓M的圓心為,半徑為,方程為,A正確;雙曲線C的離心率,B正確;雙曲線的漸近線方程為,C錯(cuò)誤;由,解得,則點(diǎn)橫坐標(biāo)滿足,而,于是,D正確.12.BD解:如圖,以點(diǎn)D為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則D0,0,0對(duì)于A,DD則DD1?AF=2≠0對(duì)于B,A1則cosA1G,EF=A1G對(duì)于D,設(shè)平面AEF的法向量n=x,y,z,則有令x=2,則z=2,y=1,所以n=因?yàn)锳1G?n=?2+2=0,所以A1G⊥n,又A對(duì)于C,S?EFG=12×2×1=115.解:設(shè)點(diǎn)B(2,15)關(guān)于直線l:?3x–4y

+?4=0的對(duì)稱點(diǎn)為B'則{15?b2?a×34=?13×2+a2?4×15+b216.【詳解】由題得,,由正弦定理得,又,代入得,故,由余弦定理可得,因?yàn)椋裕?17.解:(1)直線BC的斜率kBC=6?40?(?3)=所以BC邊上的高所在的直線方程為y?2=?32(x+1),即(2)?BC的方程為y=23則點(diǎn)A到直線BC的距離d=|?2?6+18||BC|=所以S△ABC

18.解:(1)根據(jù)題意,圓C的半徑r=|?3+4+4|故圓C的方程為(x+1)2(2)若切線的斜率不存在,即直線方程為x=?2,圓心到直線距離d=1=r,直線與圓相切,則切線的方程為x=?2,符合題意,……4分若切線的斜率存在,設(shè)切線的方程為y?3=k(x+2),即kx?y+2k+3=0…5分則由|k+2|1+k2所以切線的方程為3x+4y?6=0.……8分綜合可得,切線的方程為x=?2或3x+4y?6=0.

……9分…12分19.(1)橢圓,,,,即,…2分所以直線的方程為,…3分聯(lián)立,得,或,……………5分所以,……………7分的周長(zhǎng)為;………8分(2)由,得,由,得,……………10分設(shè),,的面積.…12分20本題可用傳統(tǒng)法,也可用向量法。下面答案給出傳統(tǒng)法過(guò)程:(1)證明:取PB的中點(diǎn)G,連接EG、FG,則FG//BC,且∵DE//BC且DE=12∴四邊形DEGF為平行四邊形,∴DF又EG?平面PBE,DF?平面∴DF//平面PBE

(2)解:由(1)知,DF//平面PBE∴點(diǎn)D到平面PBE的距離與F到平面PBE的距離相等,故轉(zhuǎn)化為求D到平面PBE的距離,設(shè)為d,利用等體積法:VD?PBE=VS△BDE∵PE=BE=5∴S△PBE=2321.(1)解:因?yàn)殡p曲線的一條漸近線與直線垂直,且直線的斜率為,且雙曲線的漸近線為,則,可得,所以,雙曲線的漸近線方程為,即,……………2分因?yàn)橛翼旤c(diǎn)到該條漸近線的距離為,所以,解得,……………4分所以,所以雙曲線的方程為.…6分解:若直線軸,則、關(guān)于軸對(duì)稱,此時(shí),線段的中點(diǎn)在軸上,不合乎題意,………7分設(shè)、,設(shè)直線的斜率為,則,則,所以,化簡(jiǎn)得.…10分因?yàn)榫€段的中點(diǎn)為,所以,,…11分所以,解得,即直線的斜率為.…12分

22.因?yàn)槿庵侵比庵?,所以底面,所以因?yàn)?,,所以,又,所以平面.所以兩兩垂直.…………?分

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論