




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
拓展02三角形+角平分線解答題分類訓(xùn)練(7種類型)類型一角平分線與垂直綜合1.在△ABC中,AF平分∠BAC,CD⊥AF,垂足為F,與AB交于點(diǎn)D.(1)如圖①,若∠BAC=80°,∠B=30°,求∠BCD的度數(shù);(2)如圖②,在△ABC內(nèi)部作∠ACE=∠B,求證:∠BCD=∠DCE.2.如圖,在△ABC中,∠B>∠C,AD⊥BC于點(diǎn)D,AE平分∠BAC.(1)若∠B=64°,∠C=42°,則∠DAE=______;(2)∠B、∠C與∠DAE有何數(shù)量關(guān)系?證明你的結(jié)論;(3)點(diǎn)G是線段CE上任一點(diǎn)(不與C、E重合),作GH⊥CE,交AE的延長(zhǎng)線于點(diǎn)H,點(diǎn)F在BA的延長(zhǎng)線上.若∠FAC=α,∠GHE=β,求∠B、∠C(用含α、β代數(shù)式表示).3.在△ABC中,∠B=80°,∠C=40°,
(1)如圖①,若AD⊥BC于D,求∠EAD(2)如圖②若點(diǎn)P為AE上一點(diǎn),PH⊥BC,求∠EPH4.已知(如圖1)在△ABC中,∠B>∠C,AD平分∠BAC,點(diǎn)E在AD的延長(zhǎng)線上,過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F,設(shè)∠B=α,∠C=β(1)當(dāng)α=80°,β=30°時(shí),求∠E的度數(shù);(2)試問(wèn)∠E與∠B、∠C之間存在著怎樣的數(shù)量關(guān)系,試用α,β表示∠E,并說(shuō)明理由(3)若∠EFB與∠BAE平分線交于點(diǎn)P(如圖2),當(dāng)點(diǎn)E在AD線上運(yùn)動(dòng)時(shí),∠P是否發(fā)生變化,若不變,請(qǐng)用α,β表示∠P;若變化,請(qǐng)說(shuō)明理由類型二角平分線與平行綜合5.如圖,△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB.
(1)求證:EF?∥?(2)若∠A=65°,求∠FEC的度數(shù).6.如圖,已知∠1=∠BDE,∠2+∠3=180°(1)證明:AD∥EF.(2)若DA平分∠BDE,F(xiàn)E⊥AF于點(diǎn)F,∠1=40°,求∠BAC的度數(shù).7.如圖,點(diǎn)E在AC上,點(diǎn)F在CB的延長(zhǎng)線上,AB與EF交于點(diǎn)G,∠AGE=∠CED,ED平分∠CEF.(1)求證:AB∥(2)若∠F=30°,∠AGE=50°,求8.綜合與實(shí)踐問(wèn)題情境:在數(shù)學(xué)活動(dòng)課上,老師提出了一個(gè)問(wèn)題:如圖1,在△ABC中,BD平分∠ABC,AD⊥BD于點(diǎn)D,過(guò)點(diǎn)D作EF∥BC分別交AB,AC于點(diǎn)E,
(1)問(wèn)題解決:如圖1,若∠BAC:∠ABC:∠ACB=3:(2)如圖1,若∠BED=128°,∠DAF=12∠BAD,試猜想∠DAF(3)問(wèn)題拓展:如圖2,若過(guò)點(diǎn)D作DG∥AB交BC于點(diǎn)G,連接EG,交BD于點(diǎn)O,試探究DO是否平分類型三三角形內(nèi)角的平分線9.如圖,在△ABC中,∠ABC=80°,∠ACB=50°.(1)求∠A的度數(shù);(2)BP平分∠ABC,CP平分∠ACB,求∠BPC的度數(shù).10.如圖,在△ABC中,DE⊥AB于點(diǎn)E,DF⊥BC于點(diǎn)F,且DE=DF,CD平分∠ACB,∠(1)求∠DBF+(2)求∠A11.已知:如圖,O是△ABC內(nèi)一點(diǎn),且BO、CO分別平分∠ABC、∠ACB.(1)若∠A=48°,求∠BOC;(2)若∠A=n°,求∠BOC;(3)若∠BOC=130°,利用第(2)題的結(jié)論求∠A.12.如圖,在△ABC中,AD,BD分別平分∠CAB和∠CBA并相交于點(diǎn)D.過(guò)點(diǎn)D作DE∥AC,DF∥BC分別交AB于點(diǎn)
(1)若∠EDF=80°,則∠C=___________;(2)若∠EDF=x°,證明:∠ADB=(90+x類型四三角形內(nèi)角的平分線+外角平分線13.如圖,在△ABC中,∠A=38°,∠ABC=42°,BE平分∠ABC.
(1)求∠ACD的度數(shù):(2)若CE平分∠ACD,求∠E的度數(shù).14.已知∠XOY=2α0°<α<45°,點(diǎn)A在射線OX上,點(diǎn)P在∠XOY外部,PA∥OY,∠P=12∠XOY,它另一邊交射線OX于點(diǎn)M,交射線OY于點(diǎn)
(1)如圖,若∠PAC=40°,∠PBC=20°,則α=______°;(2)若AP平分∠OAC,求證:BP平分∠OBC;(3)當(dāng)PM⊥OA時(shí),請(qǐng)直接寫出α的度數(shù).15.如圖,在△BCD中,BE平分∠DBC交CD于F,延長(zhǎng)BC至G,CE平分∠DCG,且EC、DB的延長(zhǎng)線交于A點(diǎn),若∠A=33°,∠DFE=63°.(1)求證:∠DFE=∠A+∠D+∠E;(2)求∠E的度數(shù);(3)若在上圖中作∠CBE與∠GCE的平分線交于E1,作∠CBE1與∠GCE1的平分線交于E2,作∠CBE2與∠GCE2的平分線于E3,以此類推,∠CBEn16.操作:如圖1,將△ABC沿射線BF平移到△DCE,使原B點(diǎn)與C點(diǎn)重合,這時(shí)CD∥AB,所以∠1=∠A,∠2=∠B,請(qǐng)回答:(1)∠A+∠B+∠ACB的值為________°;(2)若∠A=56°,∠B=40°,則∠ACF=________°;若∠A=x°,∠B=y°,則∠ACF=________;(3)我們把∠A、∠B、∠ACB稱為△ABC的內(nèi)角;把∠ACF稱為△ABC的外角,∠DEF為△DCE的外角,每個(gè)三角形都有六個(gè)外角.運(yùn)用(1)(2)結(jié)論,解決問(wèn)題:如圖2,已知△ABC中,∠A=56°,BP、CP分別平分∠ABC、∠BCA,CQ平分外角∠ACF交BP與點(diǎn)Q,求∠BPC,∠BQC.類型五三角形外角的平分線17.如圖,在△ABC中,∠A=80°,點(diǎn)P為外角∠CBD和∠BCE的平分線的交點(diǎn),求∠P的度數(shù).18.如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點(diǎn)P.(1)如果∠A=72°,求∠BPC的度數(shù);(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點(diǎn)Q,試探索∠Q、∠A之間的數(shù)量關(guān)系.19.如圖1,四邊形ABCD中,∠PAD,∠QCD是四邊形(1)若∠B=40°,∠ADC=120°,則∠PAD+∠QCD=_________(2)如圖2,AE平分外角∠PAD,CF平分外角∠QCD,AE與CF相交于點(diǎn)M,若∠ADC=∠B+90°,求∠AMC的度數(shù);(3)如圖3,AE平分外角∠PAD,CF平分外角∠QCD,若∠ADC=∠B,判斷AE與CF的位置關(guān)系,并說(shuō)明理由.20.(1)如圖1,∠DBC與∠BCE是△ABC的兩個(gè)外角,證明∠A+180°=∠DBC+∠BCE.(2)如圖2,若BP,CP分別平分ABC的外角∠DBC和∠BCE,那么∠P與∠A之間有怎樣的等量關(guān)系?說(shuō)明理由.(3)如圖3,若BP,CP分別平分四邊形QBCF的外角∠DBC和∠BCE,直接寫出∠P與∠Q,∠F之間的數(shù)量關(guān)系?類型六“8”字型中的角平分線21.如圖,已知:AM,CM分別平分∠BAD和∠BCD,其中∠B=32°,∠D=38°,求∠M的值.
22.我們將內(nèi)角互為對(duì)頂角的兩個(gè)三角形稱為“對(duì)頂二角形”.例如,在圖1中,△AOB的內(nèi)角∠AOB與△COD的內(nèi)角∠COD為對(duì)頂角,則△AOB與△COD為“對(duì)頂三角形”,根據(jù)三角形三個(gè)內(nèi)角和是180°,“對(duì)頂三角形”有如下性質(zhì):∠A+∠B=∠C+∠D.
性質(zhì)理解:(1)如圖1,在“對(duì)頂三角形”△AOB與△COD中,則∠AOB=85°,則∠C+∠D=______°.性質(zhì)應(yīng)用:(2)如圖2,在△ABC中,AD、BE分別平分∠BAC和∠ABC,若∠C=60°,∠ADE比∠BED大8°,求拓展提高:(3)如圖3,BE、CD是△ABC的角平分線,且∠BDC和∠BEC的平分線DP和EP相交于點(diǎn)P,設(shè)∠A=α,請(qǐng)嘗試求出∠P的度數(shù)(用含α的式了表示23.閱讀材料:兩個(gè)三角形各有一個(gè)角互為對(duì)頂角,這兩個(gè)三角形叫做對(duì)頂三角形.解決問(wèn)題:如圖,△AOD與△BOC是對(duì)頂三角形.
(1)試說(shuō)明:∠DAO+∠D=∠OBC+∠C;(2)試?yán)蒙鲜鼋Y(jié)論解決下列問(wèn)題:若AP、BP分別平分∠DAC與∠DBC,∠C=m°,∠D=n°,①求∠P的度數(shù)(用含m、n的代數(shù)式表示);②若AQ、BQ分別平分∠EAC與∠DBF,120°≤∠Q≤150°,求m+n的取值范圍.24.(1)已知:如圖①的圖形我們把它稱為“8字形”,試說(shuō)明:∠A+∠B=∠C+∠D.(2)如圖②,AP,CP分別平分∠BAD,∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù).(3)如圖③,直線AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、
類型七角平分線與翻折綜合25.在△ABC中,點(diǎn)D在線段AC上,點(diǎn)E在線段AB上,點(diǎn)F是射線AC上一點(diǎn)∠ADE=∠B.(1)如圖1,求證∠AED=∠ACB(2)如圖2,△ADE延DE翻折得到△DEG,探究∠FCB與∠BEG之間的數(shù)量關(guān)系,并證明.(3)如圖3,在(2)問(wèn)條件下,BH平分∠ABC,連接DH,若∠FCB=4∠BEG,3∠CDH=∠HDG,求∠DHB的度數(shù).26.如圖1,點(diǎn)D為△ABC邊BC的延長(zhǎng)線上一點(diǎn).(1)若∠A:∠ABC=3:4,∠ACD=140°,求∠A的度數(shù);(2)若∠ABC的角平分線與∠ACD的角平分線交于點(diǎn)M,過(guò)點(diǎn)C作CP⊥BM于點(diǎn)P.求證:∠MCP=90°-1(3)在(2)的條件下,將△MBC以直線BC為對(duì)稱軸翻折得到△NBC,∠NBC的角平分線與∠NCB的角平分線交于點(diǎn)Q(如圖2).直按寫出∠BQC與∠A的數(shù)量關(guān)系.27.如圖,將△ACB沿AC邊翻折至△ACD.(1)求證:∠BCD=2∠BAC+2∠B;(2)延長(zhǎng)DA至F,延長(zhǎng)BC交AD于E.求證:∠BAF-∠DCE=2∠B;(3)在(2)的條件下,延長(zhǎng)CE至P,連PD,連接DP,并延長(zhǎng)DP至G,作∠BPG的平分線交CA延長(zhǎng)線于Q,若∠ADG=2∠ADC,∠CQP=54°,∠ECD=46°,求∠FAB的度
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2019-2025年一級(jí)建造師之一建市政公用工程實(shí)務(wù)提升訓(xùn)練試卷A卷附答案
- 2025年初級(jí)經(jīng)濟(jì)師之初級(jí)建筑與房地產(chǎn)經(jīng)濟(jì)??碱A(yù)測(cè)題庫(kù)(奪冠系列)
- 2025年度二月份建筑裝飾工程AI設(shè)計(jì)施工協(xié)同協(xié)議
- 2025新版城市建設(shè)用地使用權(quán)轉(zhuǎn)讓合同
- 2025年度購(gòu)銷合同模板
- 農(nóng)資銷售合同樣本
- 機(jī)場(chǎng)急救飛行通訊稿
- 2025年個(gè)人抵押借款合同模板
- 國(guó)際視野社團(tuán)培養(yǎng)全球思維計(jì)劃
- 2025個(gè)人借款抵押合同范本
- 藍(lán)豆云:2024酒店質(zhì)檢SOP及質(zhì)檢報(bào)告
- 云南省昭通市鎮(zhèn)雄縣2024年小升初數(shù)學(xué)自主招生備考卷含解析
- 車間劃線執(zhí)行標(biāo)準(zhǔn)
- 2023學(xué)校幼兒園懷舊“六一兒童節(jié)”(時(shí)光不老追憶童年)主題游園活動(dòng)策劃案-47P
- 幼兒園課件《膽小先生》
- 校服供貨服務(wù)方案
- 2024年湖南省懷化市中考數(shù)學(xué)一模試卷(含解析)
- 內(nèi)鏡檢查穿孔的應(yīng)急預(yù)案
- TB10001-2016 鐵路路基設(shè)計(jì)規(guī)范
- 2024年上海市中考語(yǔ)文備考之現(xiàn)代文閱讀作家明前茶及梁曉聲相關(guān)閱讀訓(xùn)練
- 形勢(shì)與政策:“一國(guó)兩制”與祖國(guó)統(tǒng)一系列專題智慧樹知到期末考試答案2024年
評(píng)論
0/150
提交評(píng)論