新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.1函數(shù)的概念及其表示(講)解析版_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.1函數(shù)的概念及其表示(講)解析版_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.1函數(shù)的概念及其表示(講)解析版_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.1函數(shù)的概念及其表示(講)解析版_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.1函數(shù)的概念及其表示(講)解析版_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題3.1函數(shù)的概念及其表示新課程考試要求1.了解函數(shù)的概念,會(huì)求簡單的函數(shù)的定義域和值域.2.理解函數(shù)的三種表示法:解析法、圖象法和列表法.3.了解簡單的分段函數(shù),會(huì)用分段函數(shù)解決簡單的問題.核心素養(yǎng)培養(yǎng)學(xué)生數(shù)學(xué)抽象(例1.3)、數(shù)學(xué)運(yùn)算(例2--12)、數(shù)學(xué)建模(例9)、直觀想象(例5.10)等核心數(shù)學(xué)素養(yǎng).考向預(yù)測1.分段函數(shù)的應(yīng)用,要求不但要理解分段函數(shù)的概念,更要掌握基本初等函數(shù)的圖象和性質(zhì).2.函數(shù)的概念,經(jīng)常與函數(shù)的圖象和性質(zhì)結(jié)合考查.【知識(shí)清單】1.函數(shù)的概念函數(shù)兩個(gè)集合A,B設(shè)A,B是兩個(gè)非空數(shù)集對應(yīng)關(guān)系f:A→B如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng)2.函數(shù)的定義域、值域(1)在函數(shù)y=f(x),x∈A中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.(2)如果兩個(gè)函數(shù)的定義域相同,并且對應(yīng)關(guān)系完全一致,則這兩個(gè)函數(shù)為相等函數(shù).3.分段函數(shù)(1)若函數(shù)在其定義域的不同子集上,因?qū)?yīng)關(guān)系不同而分別用幾個(gè)不同的式子來表示,這種函數(shù)稱為分段函數(shù).(2)分段函數(shù)的定義域等于各段函數(shù)的定義域的并集,其值域等于各段函數(shù)的值域的并集,分段函數(shù)雖由幾個(gè)部分組成,但它表示的是一個(gè)函數(shù).【考點(diǎn)分類剖析】考點(diǎn)一函數(shù)的概念【典例1】【多選題】(2021·浙江高一期末)在下列四組函數(shù)中,SKIPIF1<0與SKIPIF1<0不表示同一函數(shù)的是()A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】ACD【解析】根據(jù)同一函數(shù)的要求,兩個(gè)函數(shù)的定義域和對應(yīng)法則應(yīng)相同,對四個(gè)選項(xiàng)中的兩個(gè)函數(shù)分別進(jìn)行判斷,得到答案.【詳解】A選項(xiàng),SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,所以二者不是同一函數(shù),故A符合題意;B選項(xiàng),SKIPIF1<0,與SKIPIF1<0定義域相同,對應(yīng)法則也相同,所以二者是同一函數(shù),故B不符合題意;C選項(xiàng),SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,所以二者不是同一函數(shù),故C符合題意;D選項(xiàng),SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,所以二者不是同一函數(shù),故D符合題意;故選:ACD.【規(guī)律方法】函數(shù)的三要素中,若定義域和對應(yīng)關(guān)系相同,則值域一定相同.因此判斷兩個(gè)函數(shù)是否相同,只需判斷定義域、對應(yīng)關(guān)系是否分別相同.【變式探究】(2021·浙江高一期末)下列函數(shù)中,與函數(shù)SKIPIF1<0是相等函數(shù)的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】依次判斷各個(gè)選項(xiàng)的解析式和定義域是否和SKIPIF1<0相同,二者皆相同即為同一函數(shù),由此得到結(jié)果.【詳解】SKIPIF1<0的定義域?yàn)镾KIPIF1<0;對于A,SKIPIF1<0定義域?yàn)镾KIPIF1<0,與SKIPIF1<0定義域不同,不是同一函數(shù),A錯(cuò)誤;對于B,SKIPIF1<0,與SKIPIF1<0定義域相同,解析式相同,是同一函數(shù),B正確;對于C,SKIPIF1<0定義域?yàn)镾KIPIF1<0,與SKIPIF1<0定義域不同,不是同一函數(shù),C錯(cuò)誤;對于D,SKIPIF1<0,與SKIPIF1<0解析式不同,不是同一函數(shù),D錯(cuò)誤.故選:B.【易混辨析】1.判斷兩個(gè)函數(shù)是否為相同函數(shù),注意把握兩點(diǎn),一看定義域是否相等,二看對應(yīng)法則是否相同.2.從圖象看,直線x=a與圖象最多有一個(gè)交點(diǎn).考點(diǎn)二:求函數(shù)的定義域【典例2】(2019·江蘇高考真題)函數(shù)的定義域是_____.【答案】.【解析】由已知得,即解得,故函數(shù)的定義域?yàn)?【典例3】(2021·全國高一課時(shí)練習(xí))(1)已知SKIPIF1<0的定義域?yàn)镾KIPIF1<0,求函數(shù)SKIPIF1<0的定義域;(2)已知SKIPIF1<0的定義域?yàn)镾KIPIF1<0,求SKIPIF1<0的定義域;(3)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,求函數(shù)SKIPIF1<0的定義域.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【解析】利用抽象函數(shù)的定義域求解.【詳解】(1)∵SKIPIF1<0中的SKIPIF1<0的范圍與SKIPIF1<0中的x的取值范圍相同.∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0的定義域?yàn)镾KIPIF1<0.(2)由題意知SKIPIF1<0中的SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0中SKIPIF1<0的取值范圍與SKIPIF1<0中的x的取值范圍相同,∴SKIPIF1<0的定義域?yàn)镾KIPIF1<0.(3)∵函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0的定義域?yàn)镾KIPIF1<0.又SKIPIF1<0,即SKIPIF1<0,∴函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0.【規(guī)律方法】1.已知函數(shù)的具體解析式求定義域的方法(1)若f(x)是由一些基本初等函數(shù)通過四則運(yùn)算構(gòu)成的,則它的定義域?yàn)楦骰境醯群瘮?shù)的定義域的交集.(2)復(fù)合函數(shù)的定義域:先由外層函數(shù)的定義域確定內(nèi)層函數(shù)的值域,從而確定對應(yīng)的內(nèi)層函數(shù)自變量的取值范圍,還需要確定內(nèi)層函數(shù)的定義域,兩者取交集即可.2.抽象函數(shù)的定義域的求法(1)若已知函數(shù)f(x)的定義域?yàn)閇a,b],則復(fù)合函數(shù)f(g(x))的定義域由a≤g(x)≤b求出.(2)若已知函數(shù)f(g(x))的定義域?yàn)閇a,b],則f(x)的定義域?yàn)間(x)在x∈[a,b]時(shí)的值域.【變式探究】1.函數(shù)的定義域?yàn)椋ǎ〢. B.C. D.【答案】C【解析】故答案選C2.(2020·河南省鄭州一中高二期中(文))已知函數(shù)定義域是,則的定義域是()A.[0,] B. C. D.【答案】A【解析】因?yàn)楹瘮?shù)定義域是所以所以,解得:故函數(shù)的定義域是[0,]故選:A【特別提醒】求函數(shù)的定義域,往往要解不等式或不等式組,因此,要熟練掌握一元一次不等式、一元二次不等式的解法、牢記不等式的性質(zhì),學(xué)會(huì)利用數(shù)形結(jié)合思想,借助數(shù)軸解題.另外,函數(shù)的定義域、值域都是集合,要用適當(dāng)?shù)谋硎痉椒右员磉_(dá)或依據(jù)題目的要求予以表達(dá).高頻考點(diǎn)三:求函數(shù)的解析式【典例4】(2021·全國高一課時(shí)練習(xí))已知fSKIPIF1<0=x2+SKIPIF1<0,則函數(shù)f(x)=_______,f(3)=_______.【答案】SKIPIF1<011【解析】利用換元法可求出SKIPIF1<0,進(jìn)一步可得SKIPIF1<0.【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【典例5】(2021·全國高三專題練習(xí))如圖所示,函數(shù)SKIPIF1<0的圖象是折線段ABC,其中A、B、C的坐標(biāo)分別為(0,4)、(2,0)、(6,4),求函數(shù)SKIPIF1<0的解析式.【答案】SKIPIF1<0【解析】根據(jù)圖象分段求出解析式,再寫成分段的形式即可得解.【詳解】設(shè)線段SKIPIF1<0所對應(yīng)的函數(shù)解析式為SKIPIF1<0,將SKIPIF1<0與SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,同理,線段SKIPIF1<0所對應(yīng)的函數(shù)解析式為SKIPIF1<0,所以SKIPIF1<0.【規(guī)律方法】1.已知函數(shù)類型,用待定系數(shù)法求解析式.2.已知函數(shù)圖象,用待定系數(shù)法求解析式,如果圖象是分段的,要用分段函數(shù)表示.3.已知求,或已知求,用代入法、換元法或配湊法.4.若與或滿足某個(gè)等式,可構(gòu)造另一個(gè)等式,通過解方程組求解.5.應(yīng)用題求解析式可用待定系數(shù)法求解.【變式探究】1.已知單調(diào)函數(shù)f(x),對任意的x∈R都有f[f(x)?2x]=6,則f(2)=()A.2B.4C.6D.8【答案】C【解析】設(shè)t=f(x)?2x,則ft=6令x=t,則f解得t=2,∴fx∴f2故選C.2.(2021·全國高一課時(shí)練習(xí))已知二次函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的解析式.(2)求SKIPIF1<0在SKIPIF1<0上的最大值.【答案】(1)SKIPIF1<0;(2)3.【解析】(1)設(shè)SKIPIF1<0,SKIPIF1<0,代入求解SKIPIF1<0,化簡求解系數(shù).(2)將二次函數(shù)配成頂點(diǎn)式,分析其單調(diào)性,即可求出其最值.【詳解】(1)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴由題SKIPIF1<0,SKIPIF1<0恒成立∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.(2)由(1)可得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0.考點(diǎn)四:求函數(shù)的值域

【典例6】函數(shù)的值域?yàn)椋ǎ〢. B. C. D.【答案】C【解析】當(dāng)時(shí),,(當(dāng)且僅當(dāng),即時(shí)取等號(hào)),的值域?yàn)?故選:.【典例7】【多選題】(2021·全國高三專題練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,值域?yàn)镾KIPIF1<0,則()A.函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0 B.函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0C.函數(shù)SKIPIF1<0的定義域和值域都是SKIPIF1<0 D.函數(shù)SKIPIF1<0的定義域和值域都是SKIPIF1<0【答案】BC【解析】根據(jù)抽象函數(shù)的定義域即可判斷選項(xiàng)A,根據(jù)SKIPIF1<0值域?yàn)镾KIPIF1<0,即可判斷選項(xiàng)B,令SKIPIF1<0,求SKIPIF1<0得范圍即為定義域,由SKIPIF1<0可得值域,即可判斷選項(xiàng)C,由SKIPIF1<0的值域?yàn)镾KIPIF1<0可得SKIPIF1<0,但無法判斷定義域,可判斷選項(xiàng)D,進(jìn)而可得正確選項(xiàng).【詳解】對于選項(xiàng)A:令SKIPIF1<0可得SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,故選項(xiàng)A不正確;對于選項(xiàng)B:因?yàn)镾KIPIF1<0值域?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的值域?yàn)镾KIPIF1<0,可得函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,故選項(xiàng)B正確;對于選項(xiàng)C:令SKIPIF1<0,因?yàn)镾KIPIF1<0可得SKIPIF1<0恒成立,所以函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,因?yàn)镾KIPIF1<0,所以函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,故選項(xiàng)C正確;對于選項(xiàng)D:若函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則SKIPIF1<0,此時(shí)無法判斷其定義域是否為SKIPIF1<0,故選項(xiàng)D不正確,故選:BC【典例8】(2021·浙江高一期末)函數(shù)SKIPIF1<0的定義域是_________,函數(shù)SKIPIF1<0的值域?yàn)開_________.【答案】SKIPIF1<0SKIPIF1<0【解析】①由SKIPIF1<0解不等式,即可求出定義域;②利用換元法,令SKIPIF1<0,SKIPIF1<0,將原函數(shù)轉(zhuǎn)化為關(guān)于SKIPIF1<0的二次函數(shù),求值域即可.【詳解】①由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,故函數(shù)SKIPIF1<0的定義域是SKIPIF1<0.②令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以原函數(shù)可化為SKIPIF1<0,其對稱軸為SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0.故答案為:①SKIPIF1<0;②SKIPIF1<0【規(guī)律方法】函數(shù)值域的常見求法:(1)配方法配方法是求“二次函數(shù)型函數(shù)”值域的基本方法,形如F(x)=a[f(x)]2+bf(x)+c(a≠0)的函數(shù)的值域問題,均可使用配方法.(2)數(shù)形結(jié)合法若函數(shù)的解析式的幾何意義較明顯,如距離、斜率等,可用數(shù)與形結(jié)合的方法.(3)基本不等式法:要注意條件“一正,二定,三相等”.(可見上一專題)(4)利用函數(shù)的單調(diào)性①單調(diào)函數(shù)的圖象是一直上升或一直下降的,因此若單調(diào)函數(shù)在端點(diǎn)處有定義,則該函數(shù)在端點(diǎn)處取最值,即若y=f(x)在[a,b]上單調(diào)遞增,則y最?。絝(a),y最大=f(b);若y=f(x)在[a,b]上單調(diào)遞減,則y最?。絝(b),y最大=f(a).②形如y=ax+b+eq\r(dx+c)的函數(shù),若ad>0,則用單調(diào)性求值域;若ad<0,則用換元法.③形如y=x+eq\f(k,x)(k>0)的函數(shù),若不能用基本不等式,則可考慮用函數(shù)的單調(diào)性,當(dāng)x>0時(shí),函數(shù)y=x+eq\f(k,x)(k>0)的單調(diào)減區(qū)間為(0,eq\r(k)],單調(diào)增區(qū)間為[eq\r(k),+∞).一般地,把函數(shù)y=x+eq\f(k,x)(k>0,x>0)叫做對勾函數(shù),其圖象的轉(zhuǎn)折點(diǎn)為(eq\r(k),2eq\r(k)),至于x<0的情況,可根據(jù)函數(shù)的奇偶性解決.*(5)導(dǎo)數(shù)法利用導(dǎo)函數(shù)求出最值,從而確定值域.高頻考點(diǎn)五:分段函數(shù)及其應(yīng)用【典例9】(2021·河南新鄉(xiāng)市·高三月考(理))如圖,在正方形SKIPIF1<0中,SKIPIF1<0點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā),沿SKIPIF1<0向,以每SKIPIF1<0個(gè)單位的速度在正方形SKIPIF1<0的邊上運(yùn)動(dòng);點(diǎn)SKIPIF1<0從點(diǎn)SKIPIF1<0出發(fā),沿SKIPIF1<0方向,以每秒SKIPIF1<0個(gè)單位的速度在正方形SKIPIF1<0的邊上運(yùn)動(dòng).點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為SKIPIF1<0(單位:秒),SKIPIF1<0的面積為SKIPIF1<0(規(guī)定SKIPIF1<0共線時(shí)其面積為零,則點(diǎn)SKIPIF1<0第一次到達(dá)點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0的圖象為()A. B.C. D.【答案】A【解析】根據(jù)題意,分別求出當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0對應(yīng)的函數(shù)解析式,進(jìn)而得答案.【詳解】根據(jù)題意,當(dāng)SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0;所以SKIPIF1<0所以根據(jù)分段函數(shù)的解析式即可得在區(qū)間上的函數(shù)圖像為選項(xiàng)A.故選:A.【典例10】(2021·四川達(dá)州市·高三二模(理))已知函數(shù)SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0的取值范圍是__________.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,且SKIPIF1<0,結(jié)合圖象有SKIPIF1<0,從而得到SKIPIF1<0SKIPIF1<0求解.【詳解】函數(shù)SKIPIF1<0的圖象如圖所示:設(shè)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,其對稱軸為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞增,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<0【典例11】(2021·全國高一課時(shí)練習(xí))對于任意的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0表示SKIPIF1<0中較小的那個(gè)數(shù),若SKIPIF1<0,SKIPIF1<0,則集合SKIPIF1<0_______;SKIPIF1<0的最大值是_______.【答案】SKIPIF1<01【解析】作出函數(shù)SKIPIF1<0的圖象,解出方程SKIPIF1<0可得SKIPIF1<0,由圖可得SKIPIF1<0,然后可得其最大值.【詳解】函數(shù)SKIPIF1<0的圖象如下,令SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0則集合SKIPIF1<0由題意及圖象得SKIPIF1<0由圖象知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最大,最大值是1.故答案為:SKIPIF1<0,1【典例12】(江蘇高考真題)已知實(shí)數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0,若SKIPIF1<0,則a的值為________【答案】SKIPIF1<0【解析】分當(dāng)SKIPIF1<0時(shí)和當(dāng)SKIPIF1<0時(shí)兩種分別討論求解方程,可得答案.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論