安徽省皖北協(xié)作區(qū)2023年數(shù)學高一上期末學業(yè)水平測試模擬試題含解析_第1頁
安徽省皖北協(xié)作區(qū)2023年數(shù)學高一上期末學業(yè)水平測試模擬試題含解析_第2頁
安徽省皖北協(xié)作區(qū)2023年數(shù)學高一上期末學業(yè)水平測試模擬試題含解析_第3頁
安徽省皖北協(xié)作區(qū)2023年數(shù)學高一上期末學業(yè)水平測試模擬試題含解析_第4頁
安徽省皖北協(xié)作區(qū)2023年數(shù)學高一上期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

安徽省皖北協(xié)作區(qū)2023年數(shù)學高一上期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)k的取值范圍是()A. B.C. D.2.命題“,”的否定是()A, B.,C., D.,3.設(shè)函數(shù),A3 B.6C.9 D.124.若冪函數(shù)y=f(x)經(jīng)過點(3,),則此函數(shù)在定義域上是A.偶函數(shù) B.奇函數(shù)C.增函數(shù) D.減函數(shù)5.若是第二象限角,則點在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.設(shè)函數(shù),則當時,的取值為A.-4 B.4C.-10 D.107.已知函數(shù),若函數(shù)在上有兩個零點,則的取值范圍是()A. B.C. D.,8.如圖,在四面體ABCD中,E,F(xiàn)分別是AC與BD的中點,若CD=2AB=4,EF⊥BA,則EF與CD所成的角為()A.90° B.45°C.60° D.30°9.如圖,水平放置的直觀圖為,,分別與軸、軸平行,是邊中點,則關(guān)于中的三條線段命題是真命題的是A.最長的是,最短的是 B.最長的是,最短的是C.最長的是,最短的是 D.最長的是,最短的是10.已知扇形的弧長是,面積是,則扇形的圓心角的弧度數(shù)是()A. B.C. D.或11.在試驗“甲射擊三次,觀察中靶的情況”中,事件A表示隨機事件“至少中靶1次”,事件B表示隨機事件“正好中靶2次”,事件C表示隨機事件“至多中靶2次”,事件D表示隨機事件“全部脫靶”,則()A.A與C是互斥事件 B.B與C是互斥事件C.A與D是對立事件 D.B與D是對立事件12.函數(shù)的部分圖像如圖所示,則的最小正周期為()A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知圓心為(1,1),經(jīng)過點(4,5),則圓的標準方程為_____________________.14.cos(-225°)=______15.已知扇形的弧長為6,圓心角弧度數(shù)為2,則其面積為______________.16.設(shè)函數(shù),若互不相等的實數(shù)、、滿足,則的取值范圍是_________三、解答題(本大題共6小題,共70分)17.義域為的函數(shù)滿足:對任意實數(shù)x,y均有,且,又當時,.(1)求的值,并證明:當時,;(2)若不等式對任意恒成立,求實數(shù)的取值范圍.18.已知函數(shù).(1)證明為奇函數(shù);(2)若在上為單調(diào)函數(shù),當時,關(guān)于的方程:在區(qū)間上有唯一實數(shù)解,求的取值范圍.19.已知向量,函數(shù)圖象相鄰兩條對稱軸之間的距離為.(1)求的解析式;(2)若且,求的值.20.已知全集,集合,集合(1)若集合中只有一個元素,求的值;(2)若,求21.如圖,正方體的棱長為1,CB′∩BC′=O,求:(1)AO與A′C′所成角的度數(shù);(2)AO與平面ABCD所成角的正切值;(3)證明平面AOB與平面AOC垂直.22.如圖,已知圓C與x軸相切于點T(1,0),與y軸正半軸交于兩點A,B(B在A的上方),且|AB|=2.(1)求圓C的標準方程;(2)求圓C在點B處的切線方程.

參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】根據(jù)函數(shù)的單調(diào)性得到關(guān)于k的不等式組,解出即可【詳解】解:f(x)==1+,若f(x)在(﹣2,+∞)上單調(diào)遞增,則,故k≤﹣2,故選:C2、D【解析】利用全稱量詞命題的否定變換形式即可求解.【詳解】的否定是,的否定是,故“,”的否定是“,”,故選:D3、C【解析】.故選C.4、D【解析】冪函數(shù)是經(jīng)過點,設(shè)冪函數(shù)為,將點代入得到此時函數(shù)定義域上是減函數(shù),故選D5、D【解析】先分析得到,即得點所在的象限.【詳解】因為是第二象限角,所以,所以點在第四象限,故選D【點睛】本題主要考查三角函數(shù)的象限符合,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.6、C【解析】詳解】令,則,選C.7、D【解析】根據(jù)時,一定有一個零點,故只需在時有一個零點即可,列出不等式求解即可.【詳解】當時,令,即可得,;故在時,一定有一個零點;要滿足題意,顯然,令,解得只需,解得.故選:D【點睛】本題考查由函數(shù)的零點個數(shù)求參數(shù)范圍,涉及對數(shù)不等式的求解,屬綜合基礎(chǔ)題.8、D【解析】設(shè)G為AD的中點,連接GF,GE,由三角形中位線定理可得,,則∠GFE即為EF與CD所成的角,結(jié)合AB=2,CD=4,EF⊥AB,在△GEF中,利用三角函數(shù)即可得到答案.【詳解】解:設(shè)G為AD的中點,連接GF,GE則GF,GE分別為△ABD,△ACD的中線.∴,且,,且,則EF與CD所成角的度數(shù)等于EF與GE所成角的度數(shù)又EF⊥AB,∴EF⊥GF則△GEF為直角三角形,GF=1,GE=2,∠GFE=90°∴在直角△GEF中,∴∠GEF=30°故選:D.9、B【解析】由直觀圖可知軸,根據(jù)斜二測畫法規(guī)則,在原圖形中應(yīng)有,又為邊上的中線,為直角三角形,為邊上的中線,為斜邊最長,最短故選B10、C【解析】根據(jù)扇形面積公式,求出扇形的半徑,再由弧長公式,即可求出結(jié)論.【詳解】因為扇形的弧長為4,面積為2,設(shè)扇形的半徑為,則,解得,則扇形的圓心角的弧度數(shù)為.故選:C.【點睛】本題考查扇形面積和弧長公式應(yīng)用,屬于基礎(chǔ)題.11、C【解析】根據(jù)互斥事件、對立事件的定義即可求解.【詳解】解:因為A與C,B與C可能同時發(fā)生,故選項A、B不正確;B與D不可能同時發(fā)生,但B與D不是事件的所有結(jié)果,故選項D不正確;A與D不可能同時發(fā)生,且A與D為事件的所有結(jié)果,故選項C正確故選:C.12、B【解析】由圖可知,,計算即可.【詳解】由圖可知,,則,故選:B二、填空題(本大題共4小題,共20分)13、【解析】設(shè)出圓的標準方程,代入點的坐標,求出半徑,求出圓的標準方程【詳解】設(shè)圓的標準方程為(x-1)2+(y-1)2=R2,由圓經(jīng)過點(4,5)得R2=25,從而所求方程為(x-1)2+(y-1)2=25,故答案為(x-1)2+(y-1)2=25【點睛】本題主要考查圓的標準方程,利用了待定系數(shù)法,關(guān)鍵是確定圓的半徑14、【解析】直接利用誘導(dǎo)公式求知【詳解】【點睛】本題考查利用誘導(dǎo)公式求知,一般按照以下幾個步驟:負化正,大化小,劃到銳角為終了同時在轉(zhuǎn)化時需注意“奇變偶不變,符號看象限.”15、9【解析】根據(jù)扇形的弧長是6,圓心角為2,先求得半徑,再代入公式求解.【詳解】因為扇形的弧長是6,圓心角為2,所以,所以扇形的面積為,故答案為:9.16、【解析】作出函數(shù)的圖象,設(shè),求出的取值范圍以及的值,由此可求得的取值范圍.【詳解】作出函數(shù)的圖象,設(shè),如下圖所示:二次函數(shù)的圖象關(guān)于直線對稱,則,由圖可得,可得,解得,所以,.故答案為:.【點睛】關(guān)鍵點點睛:本題考查零點有關(guān)代數(shù)式的取值范圍的求解,解題的關(guān)鍵在于利用利用圖象結(jié)合對稱性以及對數(shù)運算得出零點相關(guān)的等式與不等式,進而求解.三、解答題(本大題共6小題,共70分)17、(1)答案見解析;(2)或.【解析】(1)利用賦值法計算可得,設(shè),則,利用拆項:即可證得:當時,;(2)結(jié)合(1)的結(jié)論可證得是增函數(shù),據(jù)此脫去f符號,原問題轉(zhuǎn)化為在上恒成立,分離參數(shù)有:恒成立,結(jié)合基本不等式的結(jié)論可得實數(shù)的取值范圍是或.試題解析:(1)令,得,令,得,令,得,設(shè),則,因為,所以;(2)設(shè),

,

因為所以,所以為增函數(shù),所以,

即,上式等價于對任意恒成立,因為,所以上式等價于對任意恒成立,設(shè),(時取等),所以,解得或.18、(1)證明見解析(2)【解析】(1)先求函數(shù)的定義域,再根據(jù)的關(guān)系可證明奇偶性;(2)根據(jù)單調(diào)性及奇函數(shù)性質(zhì),有,再通過換元,轉(zhuǎn)化為二次函數(shù),通過區(qū)間分類討論可求解.【小問1詳解】對任意的,,則對任意的恒成立,所以,函數(shù)的定義域為,∴,∴,故函數(shù)為奇函數(shù);【小問2詳解】∵函數(shù)為奇函數(shù)且在上的單調(diào)函數(shù),∴由可得,其中,設(shè),則,則.∵則,若關(guān)于的方程在上只有一個實根,則或.所以,令,其中.所以,函數(shù)在時單調(diào)遞增.①若函數(shù)在內(nèi)有且只有一個零點,在內(nèi)無零點.則,解得;②若為函數(shù)的唯一零點,則,解得,∵,則.且當時,設(shè)函數(shù)的另一個零點為,則,可得,符合題意.綜上所述,實數(shù)的取值范圍是.19、(1);(2).【解析】(1)利用數(shù)量積及三角恒等變換知識化簡得;(2)由,可得,進而得到,再利用兩角和余弦公式即可得到結(jié)果.試題解析:(1),,即(2),20、(1)(2)【解析】(1)對應(yīng)一元二次方程兩根相等,.(2)先由已知確定、的值,再確定集合、的元素即可.【小問1詳解】因為集合中只有一個元素,所以,【小問2詳解】當時,,,,此時,,21、(1)30°(2)(3)見解析【解析】(1)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法求AO與A′C′所成角的度數(shù);(2)利用向量法求AO與平面ABCD所成角的正切值;(3)證明平面AOB與平面AOC的法向量垂直.【詳解】(1)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,A(1,0,0),O(),(1,0,1),C′(0,1,1),(,1,),(﹣1,1,0),設(shè)AO與A′C′所成角為θ,則cosθ,∴θ=30°,∴AO與A′C′所成角為30°.(2)∵(),面ABCD的法向量為(0,0,1),設(shè)AO與平面ABCD所成角為α,則sinα=|cos|,cosα,∴tanα.∴AO與平面ABCD所成角的正切值為.(3)C(0,1,0),(),(0,1,0),(﹣1,1,0),設(shè)平面AOB的法向量(x,y,z),則,取x=1,得(1,0,1),設(shè)平面AOC的法向量(a,b,c),則,取a=1,得(1,1,﹣1),∵1+0﹣1=0,∴平面AOB與平面AOC垂直.【點睛】本題主要考查空間角的求法和面面垂直的證明,意在考查學生對這些知識的理解掌握水平.22、(1)(2)【解析】(1)做輔助線,利用勾股定理,計算BC的長度,然后得出C的坐標,結(jié)合圓的方程,即可得出答案.(2)利用直線垂直,斜率之積為-1,計算切線的斜率,結(jié)合點斜式,得到方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論