




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
勾股定理的探索與證明基礎(chǔ)知識(shí)點(diǎn):1:勾股定理直角三角形兩直角邊a、b的平方和等于斜邊c的平方。即:a2+b2=c2要點(diǎn)詮釋:勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊;(2)已知直角三角形的一邊與另兩邊的關(guān)系,求直角三角形的另兩邊;(3)利用勾股定理可以證明線段平方關(guān)系的問(wèn)題。2:勾股定理的逆定理如果三角形的三邊長(zhǎng):a、b、c,則有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形。要點(diǎn)詮釋:勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過(guò)“數(shù)轉(zhuǎn)化為形”來(lái)確定三角形的可能形狀,在運(yùn)用這一定理時(shí)應(yīng)注意:(1)首先確定最大邊,不妨設(shè)最長(zhǎng)邊長(zhǎng)為:c;(2)驗(yàn)證c2與a2+b2是否具有相等關(guān)系,若c2=a2+b2,則△ABC是以∠C為直角的直角三角形(若c2>a2+b2,則△ABC是以∠C為鈍角的鈍角三角形;若c2<a2+b2,則△ABC為銳角三角形)。3:勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理;聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反,都與直角三角形有關(guān)。4:互逆命題的概念如果一個(gè)命題的題設(shè)和結(jié)論分別是另一個(gè)命題的結(jié)論和題設(shè),這樣的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。5:勾股定理的證明勾股定理的證明方法很多,常見(jiàn)的是拼圖的方法用拼圖的方法驗(yàn)證勾股定理的思路是:①圖形經(jīng)過(guò)割補(bǔ)拼接后,只要沒(méi)有重疊,沒(méi)有空隙,面積不會(huì)改變;②根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。規(guī)律方法指導(dǎo)1.勾股定理的證明實(shí)際采用的是圖形面積與代數(shù)恒等式的關(guān)系相互轉(zhuǎn)化證明的。2.勾股定理反映的是直角三角形的三邊的數(shù)量關(guān)系,可以用于解決求解直角三角形邊邊關(guān)系的題目。3.勾股定理在應(yīng)用時(shí)一定要注意弄清誰(shuí)是斜邊誰(shuí)直角邊,這是這個(gè)知識(shí)在應(yīng)用過(guò)程中易犯的主要錯(cuò)誤。4.勾股定理的逆定理:如果三角形的三條邊長(zhǎng)a,b,c有下列關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形;該逆定理給出判定一個(gè)三角形是否是直角三角形的判定方法.5.應(yīng)用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形的過(guò)程主要是進(jìn)行代數(shù)運(yùn)算,通過(guò)學(xué)習(xí)加深對(duì)“數(shù)形結(jié)合”的理解.我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理)勾股定理證明:?勾股定理是平面幾何中最重要的定理!它是歷史上第一個(gè)將數(shù)與形聯(lián)系起來(lái)的定理,開(kāi)啟了論證幾何的開(kāi)端,甚至引發(fā)了第一次數(shù)學(xué)危機(jī),勾股定理的發(fā)現(xiàn)使人們加深了對(duì)數(shù)的理解,發(fā)現(xiàn)了無(wú)理數(shù)。勾股定理也是歷史上第一個(gè)給出完全解答的不定方程,并引出了費(fèi)馬大定理。而勾股定理的證明目前約有500種,是數(shù)學(xué)定理中證明方法最多的定理之一。今天來(lái)分享幾種證明方法,從證明方法中感受勾股定理的魅力,加深對(duì)勾股定理的理解。方法示例方法一:趙爽弦圖證法方法二:畢達(dá)哥拉斯證法方法三:書(shū)本證明法方法四:利用三角形相似推導(dǎo)方法五:切割線定理證明方法六:托勒密定理證明方法七:利用切線長(zhǎng)定理方法方法八:總統(tǒng)證法方法方法九:八法變式方法十和方法十一方法十二:方法十三:面積法方法十四:拼接法方法十五:拼接法2方法十六:射影定理方法十七:余弦定理,當(dāng)90度角時(shí)方法十八:達(dá)芬奇的證明方法十九:行列式方法二十:無(wú)窮級(jí)數(shù)證明法上述方法是非常常見(jiàn)的方法,當(dāng)然同學(xué)們可以總結(jié)出,用到最多的還是面積法,對(duì)于面積法無(wú)論證明方法如何變化,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 8 網(wǎng)絡(luò)新世界 (教學(xué)設(shè)計(jì)) -部編版道德與法治四年級(jí)上冊(cè)
- 荊州學(xué)院《專項(xiàng)技能與實(shí)踐1》2023-2024學(xué)年第二學(xué)期期末試卷
- 東華大學(xué)《線性系統(tǒng)理論》2023-2024學(xué)年第二學(xué)期期末試卷
- 煙臺(tái)科技學(xué)院《信息技術(shù)學(xué)科課程與教學(xué)論》2023-2024學(xué)年第二學(xué)期期末試卷
- 燕山大學(xué)《環(huán)境評(píng)價(jià)與工業(yè)環(huán)境管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 西安工商學(xué)院《翻譯技術(shù)實(shí)踐》2023-2024學(xué)年第二學(xué)期期末試卷
- 長(zhǎng)春健康職業(yè)學(xué)院《中國(guó)寫(xiě)意畫(huà)》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶海聯(lián)職業(yè)技術(shù)學(xué)院《高等流體力學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 韶關(guān)學(xué)院《班主任工作方法與藝術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)蒙古鴻德文理學(xué)院《地下水動(dòng)力學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- QSB質(zhì)量體系基礎(chǔ)課件
- 小兒高熱驚厥精品課件
- 優(yōu)秀員工榮譽(yù)證書(shū)模板
- 三維電生理導(dǎo)航系統(tǒng)技術(shù)參數(shù)
- 三年級(jí)下冊(cè)科學(xué)活動(dòng)手冊(cè)
- 《交通工程CAD》課程教學(xué)大綱(本科)
- 人教版數(shù)學(xué)五年級(jí)下冊(cè) 全冊(cè)各單元教材解析
- 換班申請(qǐng)表(標(biāo)準(zhǔn)模版)
- 者陰村戰(zhàn)友紀(jì)念者陰山對(duì)越自衛(wèi)還擊作戰(zhàn)30周年聯(lián)誼會(huì)計(jì)劃2
- 基于單片機(jī)的電子廣告牌設(shè)計(jì)畢業(yè)設(shè)計(jì)論文
- 承插型盤(pán)扣式支模架專項(xiàng)施工方案
評(píng)論
0/150
提交評(píng)論