2024屆廣東省梅州市梅江實驗中學中考數(shù)學最后沖刺模擬試卷含解析_第1頁
2024屆廣東省梅州市梅江實驗中學中考數(shù)學最后沖刺模擬試卷含解析_第2頁
2024屆廣東省梅州市梅江實驗中學中考數(shù)學最后沖刺模擬試卷含解析_第3頁
2024屆廣東省梅州市梅江實驗中學中考數(shù)學最后沖刺模擬試卷含解析_第4頁
2024屆廣東省梅州市梅江實驗中學中考數(shù)學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣東省梅州市梅江實驗中學中考數(shù)學最后沖刺模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知一個多邊形的每一個外角都相等,一個內角與一個外角的度數(shù)之比是3:1,這個多邊形的邊數(shù)是A.8 B.9 C.10 D.122.二次函數(shù)y=ax2+c的圖象如圖所示,正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標系中的圖象可能是()A. B. C. D.3.將一些半徑相同的小圓按如圖所示的規(guī)律擺放,第1個圖形有4個小圓,第2個圖形有8個小圓,第3個圖形有14個小圓,…,依次規(guī)律,第7個圖形的小圓個數(shù)是()A.56 B.58 C.63 D.724.計算±的值為()A.±3 B.±9 C.3 D.95.如圖,是一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象,則關于x的不等式kx+b>的解集為A.x>1 B.﹣2<x<1C.﹣2<x<0或x>1 D.x<﹣26.下列圖形是幾家通訊公司的標志,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7.已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形外,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形外繞點B逆時針旋轉,使ON邊與BC邊重合,完成第一次旋轉;再繞點C逆時針旋轉,使MN邊與CD邊重合,完成第二次旋轉;……在這樣連續(xù)6次旋轉的過程中,點B,O間的距離不可能是()A.0 B.0.8 C.2.5 D.3.48.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)9.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=310.每到四月,許多地方楊絮、柳絮如雪花般漫天飛舞,人們不堪其憂,據(jù)測定,楊絮纖維的直徑約為0.0000105m,該數(shù)值用科學記數(shù)法表示為()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣7二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為_____.12.已知⊙O的半徑為5,由直徑AB的端點B作⊙O的切線,從圓周上一點P引該切線的垂線PM,M為垂足,連接PA,設PA=x,則AP+2PM的函數(shù)表達式為______,此函數(shù)的最大值是____,最小值是______.13.如圖,矩形ABCD中,AB=3,對角線AC,BD相交于點O,AE垂直平分OB于點E,則AD的長為____________.14.如圖,正△ABC的邊長為2,點A、B在半徑為2的圓上,點C在圓內,將正ΔABC繞點A逆時針針旋轉,當點C第一次落在圓上時,旋轉角的正切值為_______________15.肥皂泡的泡壁厚度大約是,用科學記數(shù)法表示為_______.16.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關于x的一元二次方程﹣x2+bx+c=0的解為_____.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,AD是BC邊上的高,BE平分∠ABC交AC邊于E,∠BAC=60°,∠ABE=25°.求∠DAC的度數(shù).18.(8分)如圖,點O為Rt△ABC斜邊AB上的一點,以OA為半徑的⊙O與BC切于點D,與AC交于點E,連接AD.求證:AD平分∠BAC;若∠BAC=60°,OA=4,求陰影部分的面積(結果保留π).19.(8分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點E,過點E作⊙O的切線交AB于點F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長.20.(8分)先化簡,再求值:(x﹣2﹣)÷,其中x=.21.(8分)問題情境:課堂上,同學們研究幾何變量之間的函數(shù)關系問題:如圖,菱形ABCD的對角線AC,BD相交于點O,AC=4,BD=1.點P是AC上的一個動點,過點P作MN⊥AC,垂足為點P(點M在邊AD、DC上,點N在邊AB、BC上).設AP的長為x(0≤x≤4),△AMN的面積為y.建立模型:(1)y與x的函數(shù)關系式為:,解決問題:(1)為進一步研究y隨x變化的規(guī)律,小明想畫出此函數(shù)的圖象.請你補充列表,并在如圖的坐標系中畫出此函數(shù)的圖象:x01134y00(3)觀察所畫的圖象,寫出該函數(shù)的兩條性質:.22.(10分)如圖,在中,,點在上運動,點在上,始終保持與相等,的垂直平分線交于點,交于,判斷與的位置關系,并說明理由;若,,,求線段的長.23.(12分)為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調查.已知抽取的樣本中男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:組別身高Ax<160B160≤x<165C165≤x<170D170≤x<175Ex≥175根據(jù)圖表提供的信息,回答下列問題:(1)樣本中,男生的身高眾數(shù)在組,中位數(shù)在組;(2)樣本中,女生身高在E組的有人,E組所在扇形的圓心角度數(shù)為;(3)已知該校共有男生600人,女生480人,請估讓身高在165≤x<175之間的學生約有多少人?24.已知關于的方程有兩個實數(shù)根.求的取值范圍;若,求的值;

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解題分析】試題分析:設這個多邊形的外角為x°,則內角為3x°,根據(jù)多邊形的相鄰的內角與外角互補可的方程x+3x=180,解可得外角的度數(shù),再用外角和除以外角度數(shù)即可得到邊數(shù).解:設這個多邊形的外角為x°,則內角為3x°,由題意得:x+3x=180,解得x=45,這個多邊形的邊數(shù):360°÷45°=8,故選A.考點:多邊形內角與外角.2、C【解題分析】

根據(jù)二次函數(shù)圖像位置確定a0,c0,即可確定正比例函數(shù)和反比例函數(shù)圖像位置.【題目詳解】解:由二次函數(shù)的圖像可知a0,c0,∴正比例函數(shù)過二四象限,反比例函數(shù)過一三象限.故選C.【題目點撥】本題考查了函數(shù)圖像的性質,屬于簡單題,熟悉系數(shù)與函數(shù)圖像的關系是解題關鍵.3、B【解題分析】試題分析:第一個圖形的小圓數(shù)量=1×2+2=4;第二個圖形的小圓數(shù)量=2×3+2=8;第三個圖形的小圓數(shù)量=3×4+2=14;則第n個圖形的小圓數(shù)量=n(n+1)+2個,則第七個圖形的小圓數(shù)量=7×8+2=58個.考點:規(guī)律題4、B【解題分析】

∵(±9)2=81,∴±±9.故選B.5、C【解題分析】

根據(jù)反比例函數(shù)與一次函數(shù)在同一坐標系內的圖象可直接解答.【題目詳解】觀察圖象,兩函數(shù)圖象的交點坐標為(1,2),(-2,-1),kx+b>的解就是一次函數(shù)y=kx+b圖象在反比例函數(shù)y=的圖象的上方的時候x的取值范圍,

由圖象可得:-2<x<0或x>1,

故選C.【題目點撥】本題考查的是反比例涵數(shù)與一次函數(shù)圖象在同一坐標系中二者的圖象之間的關系.一般這種類型的題不要計算反比計算表達式,解不等式,直接從從圖象上直接解答.6、C【解題分析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】A.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;C.是軸對稱圖形,也是中心對稱圖形.故正確;D.不是軸對稱圖形,是中心對稱圖形.故錯誤.故選C.【題目點撥】掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180°后與原圖重合.7、D【解題分析】

如圖,點O的運動軌跡是圖在黃線,點B,O間的距離d的最小值為0,最大值為線段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判斷;【題目詳解】如圖,點O的運動軌跡是圖在黃線,作CH⊥BD于點H,∵六邊形ABCDE是正六邊形,∴∠BCD=120o,∴∠CBH=30o,∴BH=cos30o·BC=,∴BD=.∵DK=,∴BK=,點B,O間的距離d的最小值為0,最大值為線段BK=,∴0≤d≤,即0≤d≤3.1,故點B,O間的距離不可能是3.4,故選:D.【題目點撥】本題考查正多邊形與圓、旋轉變換等知識,解題的關鍵是正確作出點O的運動軌跡,求出點B,O間的距離的最小值以及最大值是解答本題的關鍵.8、D【解題分析】

由表易得x+(10-x)=10,所以總人數(shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【題目詳解】∵年齡為15歲和16歲的同學人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團總人數(shù)為30人,∴合唱團成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.9、C【解題分析】

試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.10、C【解題分析】試題分析:絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.所以0.0000105=1.05×10﹣5,故選C.考點:科學記數(shù)法.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解題分析】

由∠ACD=∠B結合公共角∠A=∠A,即可證出△ACD∽△ABC,根據(jù)相似三角形的性質可得出=()2=,結合△ADC的面積為1,即可求出△BCD的面積.【題目詳解】∵∠ACD=∠B,∠DAC=∠CAB,∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S△ACD=4,∴S△BCD=S△ABC﹣S△ACD=4﹣1=1.故答案為1.【題目點撥】本題考查相似三角形的判定與性質,解題的關鍵是掌握相似三角形的判定與性質.12、x2+x+20(0<x<10)不存在.【解題分析】

先連接BP,AB是直徑,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求從而有(0<x<10),再根據(jù)二次函數(shù)的性質,可求函數(shù)的最大值.【題目詳解】如圖所示,連接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴∴(0<x<10),∵∴AP+2PM有最大值,沒有最小值,∴y最大值=故答案為(0<x<10),,不存在.【題目點撥】考查相似三角形的判定與性質,二次函數(shù)的最值等,綜合性比較強,需要熟練掌握.13、【解題分析】試題解析:∵四邊形ABCD是矩形,

∴OB=OD,OA=OC,AC=BD,

∴OA=OB,

∵AE垂直平分OB,

∴AB=AO,

∴OA=AB=OB=3,

∴BD=2OB=6,

∴AD=.【題目點撥】此題考查了矩形的性質、等邊三角形的判定與性質、線段垂直平分線的性質、勾股定理;熟練掌握矩形的性質,證明三角形是等邊三角形是解決問題的關鍵.14、3【解題分析】

作輔助線,首先求出∠DAC的大小,進而求出旋轉的角度,即可得出答案.【題目詳解】如圖,分別連接OA、OB、OD;∵OA=OB=2,AB=2,∴△OAB是等腰直角三角形,∴∠OAB=45°;同理可證:∠OAD=45°,∴∠DAB=90°;∵∠CAB=60°,∴∠DAC=90°?60°=30°,∴旋轉角的正切值是33故答案為:33【題目點撥】此題考查等邊三角形的性質,旋轉的性質,點與圓的位置關系,解直角三角形,解題關鍵在于作輔助線.15、7×10-1.【解題分析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】0.0007=7×10-1.故答案為:7×10-1.【題目點撥】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.16、x1=1,x2=﹣1.【解題分析】

直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據(jù)拋物線的對稱性可以求得拋物線與x軸的另一交點坐標,從而求得關于x的一元二次方程﹣x2+bx+c=0的解.【題目詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【題目點撥】本題考查了二次函數(shù)與一元二次方程的關系.一元二次方程-x2+bx+c=0的解實質上是拋物線y=-x2+bx+c與x軸交點的橫坐標的值.三、解答題(共8題,共72分)17、∠DAC=20°.【解題分析】

根據(jù)角平分線的定義可得∠ABC=2∠ABE,再根據(jù)直角三角形兩銳角互余求出∠BAD,然后根據(jù)∠DAC=∠BAC﹣∠BAD計算即可得解.【題目詳解】∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.∵AD是BC邊上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.【題目點撥】本題考查了三角形的內角和定理,角平分線的定義,準確識圖理清圖中各角度之間的關系是解題的關鍵.18、(1)見解析;(2)【解題分析】試題分析:(1)連接OD,則由已知易證OD∥AC,從而可得∠CAD=∠ODA,結合∠ODA=∠OAD,即可得到∠CAD=∠OAD,從而得到AD平分∠BAC;(2)連接OE、DE,由已知易證△AOE是等邊三角形,由此可得∠ADE=∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,從而可得∠ADE=∠OAD,由此可得DE∥AO,從而可得S陰影=S扇形ODE,這樣只需根據(jù)已知條件求出扇形ODE的面積即可.試題解析:(1)連接OD.∵BC是⊙O的切線,D為切點,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)連接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE為等邊三角形,∴∠AOE=60°,∴∠ADE=30°.又∵,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴陰影部分的面積=S扇形ODE=.19、(1)證明見解析;(2)4.8.【解題分析】

(1)連結OE,根據(jù)等腰三角形的性質可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質可得EF⊥OE,由此即可證得EF⊥AB;(2)連結BE,根據(jù)直徑所對的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【題目詳解】(1)證明:連結OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【題目點撥】本題考查了切線的性質定理、圓周角定理、等腰三角形的性質與判定、勾股定理及直角三角形的兩種面積求法等知識點,熟練運算這些知識是解決問題的關鍵.20、【解題分析】

根據(jù)分式的運算法則即可求出答案.【題目詳解】原式,,.當時,原式【題目點撥】本題考查的知識點是分式的化簡求值,解題關鍵是化簡成最簡再代入計算.21、(1)①y=;②;(1)見解析;(3)見解析【解題分析】

(1)根據(jù)線段相似的關系得出函數(shù)關系式(1)代入①中函數(shù)表達式即可填表(3)畫圖像,分析即可.【題目詳解】(1)設AP=x①當0≤x≤1時∵MN∥BD∴△APM∽△AOD∴∴MP=∵AC垂直平分MN∴PN=PM=x∴MN=x∴y=AP?MN=②當1<x≤4時,P在線段OC上,∴CP=4﹣x∴△CPM∽△COD∴∴PM=∴MN=1PM=4﹣x∴y==﹣∴y=(1)由(1)當x=1時,y=當x=1時,y=1當x=3時,y=(3)根據(jù)(1)畫出函數(shù)圖象示意圖可知1、當0≤x≤1時,y隨x的增大而增大1、當1<x≤4時,y隨x的增大而減小【題目點撥】本題考查函數(shù),解題的關鍵是數(shù)形結合思想.22、(1).理由見解析;(2).【解題分析】

(1)根據(jù)得到∠A=∠PDA,根據(jù)線段垂直平分線的性質得到,利用,得到,于是得到結論;

(2)連接PE,設DE=x,則EB=ED=x,CE=8-x,根據(jù)勾股定理即可得到結論.【題目詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設,由(1)得,,又,,∵,∴,∴,解得,即.【題目點撥】本題考查了線段垂直平分線的性質,直角三角形的性質,勾股定理,正確的作出輔助線解題的關鍵.23、(1)B,C;(2)2;(3)該校身

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論