




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
第01講3.1.1函數(shù)的概念課程標準學習目標①函數(shù)的概念;②了解函數(shù)的三要素;③掌握簡單函數(shù)的定義域;④掌握求函數(shù)的值;⑤掌握區(qū)間的寫法.通過本節(jié)課的學習,掌握函數(shù)概念及函數(shù)的三要素,會判斷同一函數(shù),會求簡單函數(shù)的定義域及值域.知識點01:函數(shù)的概念1、初中學習的函數(shù)的傳統(tǒng)定義設在一個變化的過程中,有兩個變量SKIPIF1<0和SKIPIF1<0,如果給定了一個SKIPIF1<0值,相應地就有唯一確定的一個SKIPIF1<0值與之對應,那么我們就稱SKIPIF1<0是SKIPIF1<0的函數(shù),其中SKIPIF1<0是自變量,SKIPIF1<0是因變量.它們描述的是兩個變量之間的依賴關系.2、函數(shù)的近代定義一般地,設SKIPIF1<0,SKIPIF1<0是非空的實數(shù)集,如果對于集合SKIPIF1<0中的任意一個數(shù)SKIPIF1<0,按照某種確定的對應關系SKIPIF1<0,在集合SKIPIF1<0中都有唯一確定的數(shù)SKIPIF1<0和它對應,那么就稱SKIPIF1<0為從集合SKIPIF1<0到集合SKIPIF1<0的一個函數(shù)(function),記作SKIPIF1<0,SKIPIF1<0.其中,SKIPIF1<0叫做自變量,SKIPIF1<0的取值范圍SKIPIF1<0叫做函數(shù)的定義域;與SKIPIF1<0的值相對應的SKIPIF1<0值叫做函數(shù)值,函數(shù)值的集合SKIPIF1<0叫做函數(shù)的值域.顯然,值域是集合SKIPIF1<0的子集.函數(shù)的四個特征:①非空性:SKIPIF1<0,SKIPIF1<0必須為非空數(shù)集(注意不僅非空,還要是數(shù)集),定義域或值域為空集的函數(shù)是不存在的.②任意性:即定義域中的每一個元素都有函數(shù)值.③單值性:每一個自變量有且僅有唯一的函數(shù)值與之對應(可以多對一,不能一對多).④方向性:函數(shù)是一個從定義域到值域的對應關系,如果改變這個對應方向,那么新的對應所確定的關系就不一定是函數(shù)關系.【即學即練1】(多選)(2023·全國·高三專題練習)下列四個圖象中,是函數(shù)圖象的是(
)A.
B.
C.
D.
【答案】ACD【詳解】由函數(shù)的定義可知,對任意的自變量SKIPIF1<0,有唯一的SKIPIF1<0值相對應,選項B中的圖像不是函數(shù)圖像,出現(xiàn)了一對多的情況,其中選項A、C、D皆符合函數(shù)的定義,可以表示是函數(shù).故選:ACD知識點02:函數(shù)的三要素1、定義域:函數(shù)的定義域是自變量的取值范圍.2、對應關系:對應關系SKIPIF1<0是函數(shù)的核心,它是對自變量SKIPIF1<0實施“對應操作”的“程序”或者“方法”.3、值域:與SKIPIF1<0的值相對應的SKIPIF1<0值叫做函數(shù)值,函數(shù)值的集合SKIPIF1<0叫做函數(shù)的值域(range).【即學即練2】(2023·上海普陀·統(tǒng)考二模)函數(shù)SKIPIF1<0的定義域為______.【答案】SKIPIF1<0【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0所以定義域為:SKIPIF1<0.故答案為:SKIPIF1<0知識點03:函數(shù)相等同一函數(shù):只有當兩個函數(shù)的定義域和對應關系都分別相同時,這兩個函數(shù)才相等,即是同一個函數(shù).【即學即練3】(2023·全國·高一專題練習)下列四組函數(shù)中,表示同一函數(shù)的是(
)A.SKIPIF1<0與SKIPIF1<0B.SKIPIF1<0與SKIPIF1<0C.SKIPIF1<0與SKIPIF1<0D.SKIPIF1<0與SKIPIF1<0【答案】D【詳解】對選項A,因為SKIPIF1<0定義域為R,SKIPIF1<0定義域為R,定義域相同,但SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0不是同一函數(shù),故A錯誤;對選項B,因為SKIPIF1<0定義域為R,SKIPIF1<0定義域為SKIPIF1<0,定義域不同,所以SKIPIF1<0,SKIPIF1<0不是同一函數(shù),故B錯誤;對選項C,因為SKIPIF1<0定義域為SKIPIF1<0,SKIPIF1<0定義域為SKIPIF1<0,定義域不同,所以SKIPIF1<0,SKIPIF1<0不是同一函數(shù),故C錯誤;對選項D,因為SKIPIF1<0定義域為R,SKIPIF1<0定義域為R,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0是同一函數(shù),故D正確.故選:D知識點04:區(qū)間的概念1區(qū)間的概念設SKIPIF1<0,SKIPIF1<0是實數(shù),且SKIPIF1<0,滿足SKIPIF1<0的實數(shù)SKIPIF1<0的全體,叫做閉區(qū)間,記作SKIPIF1<0,即,SKIPIF1<0。如圖:SKIPIF1<0,SKIPIF1<0叫做區(qū)間的端點.在數(shù)軸上表示一個區(qū)間時,若區(qū)間包括端點,則端點用實心點表示;若區(qū)間不包括端點,則端點用空心點表示.集合SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0區(qū)間SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<02含有無窮大的表示全體實數(shù)也可用區(qū)間表示為SKIPIF1<0,符號“SKIPIF1<0”讀作“正無窮大”,“SKIPIF1<0”讀作“負無窮大”,即SKIPIF1<0。集合SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0區(qū)間SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0【即學即練4】(2023秋·廣東廣州·高一西關培英中學校考期末)已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:因為集合SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故選:B.題型01函數(shù)關系的判斷【典例1】(2023秋·湖北襄陽·高一襄陽四中??茧A段練習)若函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0,則SKIPIF1<0的圖象可能是(
)A. B.C. D.【答案】B【詳解】選項A中,當SKIPIF1<0時,SKIPIF1<0,不符合題意,排除A;選項C中,存在一個x對應多個y值,不是函數(shù)的圖象,排除C;選項D中,x取不到0,不符合題意,排除D.故選:B.【典例2】(2023春·江西新余·高一新余市第一中學校考階段練習)已知集合SKIPIF1<0,SKIPIF1<0,下列對應關系中,從SKIPIF1<0到SKIPIF1<0的函數(shù)為(
)A.f:SKIPIF1<0 B.f:SKIPIF1<0C.f:SKIPIF1<0 D.f:SKIPIF1<0【答案】D【詳解】解:對A:當SKIPIF1<0時,對應的SKIPIF1<0為0,1,2,所以選項A不能構成函數(shù);對B:當SKIPIF1<0時,對應的SKIPIF1<0為0,1,4,所以選項B不能構成函數(shù);對C:當SKIPIF1<0時,對應的SKIPIF1<0為0,2,4,所以選項C不能構成函數(shù);對D:當SKIPIF1<0時,對應的SKIPIF1<0為SKIPIF1<0,1,3,所以選項D能構成函數(shù);故選:D.【變式1】(多選)(2023秋·江蘇揚州·高一??计谀┫铝袑惺呛瘮?shù)的是(
).A.SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,其中y為不大于x的最大整數(shù),SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【答案】AC【詳解】對于A,對集合SKIPIF1<0中的每個元素x,按照SKIPIF1<0,在SKIPIF1<0中都有唯一元素y與之對應,A是;對于B,在區(qū)間SKIPIF1<0內(nèi)存在元素x,按照SKIPIF1<0,在R中有兩個y值與這對應,如SKIPIF1<0,與之對應的SKIPIF1<0,B不是;對于C,對每個實數(shù)x,按照“y為不大于x的最大整數(shù)”,都有唯一一個整數(shù)y與之對應,C是;對于D,當SKIPIF1<0時,按照SKIPIF1<0,在SKIPIF1<0中不存在元素與之對應,D不是.故選:AC題型02集合與區(qū)間的轉(zhuǎn)化【典例1】(2023秋·江蘇南通·高三統(tǒng)考期末)已知全集SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:由題知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0.故選:B【典例2】(2023秋·廣東廣州·高一廣州市海珠中學??计谀┤艏蟂KIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由集合交集運算可得SKIPIF1<0.故選:C.【變式1】(2023·全國·高三專題練習)全集SKIPIF1<0,集合SKIPIF1<0,集合SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由A中不等式SKIPIF1<0變形得:SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0中不等式SKIPIF1<0解得:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又全集SKIPIF1<0,則SKIPIF1<0,故選:SKIPIF1<0.題型03同一個函數(shù)【典例1】(2023·全國·高一專題練習)下列各組函數(shù)表示相同函數(shù)的是(
)A.SKIPIF1<0和SKIPIF1<0 B.SKIPIF1<0和SKIPIF1<0C.SKIPIF1<0和SKIPIF1<0 D.SKIPIF1<0和SKIPIF1<0【答案】C【詳解】對于A中,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,兩個函數(shù)的定義域不同,所以表示不同的函數(shù);對于B中,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,兩個函數(shù)的定義域不同,所以表示不同的函數(shù);對于C中,函數(shù)SKIPIF1<0與SKIPIF1<0的定義域和對應法則都相同,所以表示相同的函數(shù);對于D中,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,兩個函數(shù)的定義域不同,所以表示不同的函數(shù).故選:C【典例2】(都選)(2023秋·內(nèi)蒙古烏蘭察布·高一??计谀┫旅娓鹘M函數(shù)表示同一函數(shù)的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0(SKIPIF1<0),SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】BC【詳解】對于A,SKIPIF1<0,SKIPIF1<0,定義域和對應法則不一樣,故不為同一函數(shù);對于B,SKIPIF1<0,SKIPIF1<0,定義域和對應法則相同,故為同一函數(shù);對于C,SKIPIF1<0,SKIPIF1<0,定義域和對應法則相同,故為同一函數(shù);對于D,SKIPIF1<0,SKIPIF1<0,定義域不同,故不為同一函數(shù);故選:BC【變式1】(2023·全國·高三專題練習)下列每組中的函數(shù)是同一個函數(shù)的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】B【詳解】對于A,函數(shù)SKIPIF1<0的定義域為R,函數(shù)SKIPIF1<0的定義域為[0,+∞),所以這兩個函數(shù)不是同一個函數(shù);對于B,因為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0的定義域均為R,所以這兩個函數(shù)是同一個函數(shù);對于C,SKIPIF1<0,SKIPIF1<0和SKIPIF1<0的對應關系不同,所以這兩個函數(shù)不是同一個函數(shù);對于D,函數(shù)SKIPIF1<0的定義域為{SKIPIF1<0,且SKIPIF1<0},函數(shù)SKIPIF1<0的定義域為R,所以這兩個函數(shù)不是同一個函數(shù).故選:B.題型04求函數(shù)值【典例1】(2023·全國·高三專題練習)若函數(shù)SKIPIF1<0,則SKIPIF1<0_________.【答案】4【詳解】因為SKIPIF1<0,所以SKIPIF1<0,故答案為:4.【典例2】(2023·高一課時練習)若SKIPIF1<0,則SKIPIF1<0=______.【答案】3【詳解】解:因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故答案為:3【變式1】(2023·高一課時練習)設函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,SKIPIF1<0.故選:B.【變式2】(2023·高一課時練習)已知SKIPIF1<0,SKIPIF1<0.(1)計算:SKIPIF1<0____________;(2)計算:SKIPIF1<0____________.【答案】1SKIPIF1<0/3.5【詳解】(1)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.(2)由(1)知SKIPIF1<0,從而SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0.故答案為:1;SKIPIF1<0.題型05根據(jù)函數(shù)值請求自變量或參數(shù)【典例1】(2022秋·福建廈門·高三校聯(lián)考階段練習)若函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則此函數(shù)的定義域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由函數(shù)SKIPIF1<0的值域是SKIPIF1<0,所以當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)的定義域為:SKIPIF1<0,故選:D【典例2】(多選)(2022秋·湖南岳陽·高一湖南省岳陽縣第一中學校聯(lián)考階段練習)若函數(shù)SKIPIF1<0在定義域SKIPIF1<0上的值域為SKIPIF1<0,則區(qū)間SKIPIF1<0可能為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【詳解】∵函數(shù)SKIPIF1<0的圖象是開口向上的拋物線,對稱軸方程為SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,故要定義域SKIPIF1<0上的值域為SKIPIF1<0,滿足題意的選項是:BC.故選:BC.【變式1】(2023·全國·高三對口高考)已知函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則x的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】SKIPIF1<0,畫出圖像,如圖所示,
令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0(舍去)或SKIPIF1<0,對于A:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故A錯誤;對于B:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故B錯誤;對于C:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故C錯誤;對于D:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故D正確;故選:D.題型06函數(shù)的定義域(具體函數(shù)的定義域)【典例1】(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0的定義域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題意得SKIPIF1<0,解得SKIPIF1<0,故定義域為SKIPIF1<0.故選:B【典例2】(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的定義域為______.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,得SKIPIF1<0,故函數(shù)的定義域為:SKIPIF1<0.故答案為:SKIPIF1<0【變式1】(2023·全國·高一專題練習)函數(shù)SKIPIF1<0的定義域為________.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.故函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.故答案為:SKIPIF1<0.題型07函數(shù)的定義域(抽象函數(shù)的定義域)【典例1】(2023秋·陜西西安·高一長安一中??计谀┮阎瘮?shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為______.【答案】SKIPIF1<0【詳解】因為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023·江西九江·??寄M預測)若SKIPIF1<0的定義域為SKIPIF1<0,求SKIPIF1<0的定義域.【答案】SKIPIF1<0.【詳解】由函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則要使函數(shù)SKIPIF1<0有意義,則SKIPIF1<0,解得SKIPIF1<0,∴函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.【變式1】(2023·全國·高三專題練習)(1)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為______.(2)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為______.【答案】SKIPIF1<0SKIPIF1<0【詳解】(1)令SKIPIF1<0,則SKIPIF1<0,因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.(2)令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0題型08函數(shù)的定義域(復合函數(shù)的定義域)【典例1】(2023秋·福建寧德·高一福建省霞浦第一中學??计谀┤艉瘮?shù)SKIPIF1<0的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:因為函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,對于函數(shù)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.故選:C【典例2】(2023春·黑龍江佳木斯·高一富錦市第一中學校考階段練習)已知函數(shù)SKIPIF1<0)的定義域為SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為()A.(SKIPIF1<0,4) B.[SKIPIF1<0,4)C.(SKIPIF1<0,6) D.(SKIPIF1<0,2)【答案】C【詳解】由函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0定義域為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,取交集得SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0.故選:C.【變式1】(2023·全國·高三專題練習)已知函數(shù)SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域為______.【答案】SKIPIF1<0【詳解】解法1:由函數(shù)SKIPIF1<0,則滿足SKIPIF1<0,可得SKIPIF1<0,即函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,對于函數(shù)SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即函數(shù)SKIPIF1<0的定義域為SKIPIF1<0.解法2:由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的定義域為SKIPIF1<0.故答案為:SKIPIF1<0.題型09函數(shù)的定義域(實際問題中的定義域)【典例1】(2023·全國·高三專題練習)已知等腰三角形的周長為SKIPIF1<0,底邊長SKIPIF1<0是腰長SKIPIF1<0的函數(shù),則函數(shù)的定義域為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題設有SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,故選A.【典例2】(2022·高一課時練習)周長為定值SKIPIF1<0的矩形,它的面積SKIPIF1<0是這個矩形的一邊長SKIPIF1<0的函數(shù),則這個函數(shù)的定義域是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】依題意知,矩形的一邊長為x,則該邊的鄰邊長為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,故這個函數(shù)的定義域是SKIPIF1<0.故選:D【變式1】(2022秋·山東煙臺·高一??茧A段練習)如圖,某小區(qū)有一塊底邊和高均為40m的銳角三角形空地,現(xiàn)規(guī)劃在空地內(nèi)種植一邊長為SKIPIF1<0(單位:m)的矩形草坪(陰影部分),要求草坪面積不小于SKIPIF1<0,則SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【詳解】設矩形另一邊的長為SKIPIF1<0m,由三角形相似得:SKIPIF1<0,(SKIPIF1<0),所以SKIPIF1<0,所以矩形草坪的面積SKIPIF1<0,解得:SKIPIF1<0.故答案為:SKIPIF1<0題型10函數(shù)的值域(常見(一次,二次,反比例)函數(shù)的值域)【典例1】(2022秋·黑龍江哈爾濱·高一??计谥校┖瘮?shù)SKIPIF1<0,則SKIPIF1<0的值域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:SKIPIF1<0,又SKIPIF1<0所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0的值域為SKIPIF1<0.故選:B.【典例2】(2022·江蘇·高一專題練習)求下列函數(shù)的定義域、值域,并畫出圖象:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0.【答案】(1)答案見解析(2)答案見解析(3)答案見解析(4)答案見解析(5)答案見解析(6)答案見解析【詳解】(1)SKIPIF1<0定義域為SKIPIF1<0,值域為SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0作出圖象如圖:(2)SKIPIF1<0的定義域為SKIPIF1<0,值域為SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0作出圖象如圖:.(3)SKIPIF1<0的定義域為SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0作出圖象如圖:由圖知:值域為SKIPIF1<0.(4)SKIPIF1<0的定義域為SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0作出圖象如圖:由圖知:值域為SKIPIF1<0;(5)SKIPIF1<0的定義域為SKIPIF1<0,開口向下的拋物線,最大值為SKIPIF1<0,所以值域為SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0作出圖象如圖:(6)SKIPIF1<0的定義域為SKIPIF1<0,對稱軸為SKIPIF1<0,開口向上,SKIPIF1<0,所以值域為SKIPIF1<0;列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0作出圖象如圖:【變式1】例題3.(2022秋·浙江杭州·高一??茧A段練習)求下列函數(shù)的值域.(1)SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)函數(shù)的定義域為SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.(2)因為函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.題型11函數(shù)的值域(根式型函數(shù)的值域)【典例1】(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的值域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.故選:A.【典例2】(2023·全國·高三專題練習)求函數(shù)SKIPIF1<0的值域為_________.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0容易看出,該函數(shù)轉(zhuǎn)化為一個開口向下的二次函數(shù),對稱軸為SKIPIF1<0,SKIPIF1<0,所以該函數(shù)在SKIPIF1<0時取到最大值SKIPIF1<0,當SKIPIF1<0時,函數(shù)取得最小值SKIPIF1<0,所以函數(shù)SKIPIF1<0值域為SKIPIF1<0.故答案為:SKIPIF1<0【變式1】(2023·高一課時練習)函數(shù)SKIPIF1<0的值域是___________.【答案】SKIPIF1<0【詳解】設SKIPIF1<0則SKIPIF1<0所以SKIPIF1<0因為函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0故答案為:SKIPIF1<0.題型12函數(shù)的值域(分式型函數(shù)的值域)【典例1】(2023·全國·高三專題練習)函數(shù)ySKIPIF1<0的值域是()A.(﹣∞,+∞) B.(﹣∞,SKIPIF1<0)∪(SKIPIF1<0,+∞)C.(﹣∞,SKIPIF1<0)∪(SKIPIF1<0,+∞) D.(﹣∞,SKIPIF1<0)∪(SKIPIF1<0,+∞)【答案】D【詳解】解:SKIPIF1<0,∴ySKIPIF1<0,∴該函數(shù)的值域為SKIPIF1<0.故選:D.【典例2】(2023秋·上海徐匯·高一上海中學??计谀?)求函數(shù)SKIPIF1<0的值域;(2)求函數(shù)SKIPIF1<0的值域.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,當且僅當SKIPIF1<0時等號成立;當SKIPIF1<0時,SKIPIF1<0,當且僅當SKIPIF1<0時等號成立.故函數(shù)值域為SKIPIF1<0;(2)函數(shù)定義域為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故函數(shù)值域為SKIPIF1<0.【變式1】(2023·全國·高三專題練習)求函數(shù)SKIPIF1<0的值域______________.【答案】SKIPIF1<0【詳解】由解析式知:函數(shù)的定義域為SKIPIF1<0,且SKIPIF1<0,∴整理可得:SKIPIF1<0,即該方程在SKIPIF1<0上有解,∴當SKIPIF1<0時,SKIPIF1<0,顯然成立;當SKIPIF1<0時,有SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0,∴綜上,有函數(shù)值域為SKIPIF1<0.故答案為:SKIPIF1<0.【變式2】(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的值域是___________.【答案】SKIPIF1<0【詳解】解:SKIPIF1<0,因為SKIPIF1<0所以函數(shù)SKIPIF1<0的定義域為SKIPIF1<0令SKIPIF1<0,整理得方程:SKIPIF1<0當SKIPIF1<0時,方程無解;當SKIPIF1<0時,SKIPIF1<0不等式整理得:SKIPIF1<0解得:SKIPIF1<0所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.故答案為:SKIPIF1<0題型13根據(jù)函數(shù)的值域求定義域【典例1】(2023·全國·高三對口高考)已知函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】SKIPIF1<0,畫出圖像,如圖所示,
令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0(舍去)或SKIPIF1<0,對于A:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故A錯誤;對于B:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故B錯誤;對于C:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故C錯誤;對于D:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故D正確;故選:D.【典例2】(多選)(2022秋·湖南郴州·高一??茧A段練習)已知函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則其定義域可能是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【詳解】令SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或-2,可作出函數(shù)圖象如圖:設定義域為SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,故AD正確,BC錯.故選:AD.【變式1】(多選)(2022秋·湖南岳陽·高一湖南省岳陽縣第一中學校聯(lián)考階段練習)若函數(shù)SKIPIF1<0在定義域SKIPIF1<0上的值域為SKIPIF1<0,則區(qū)間SKIPIF1<0可能為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【詳解】∵函數(shù)SKIPIF1<0的圖象是開口向上的拋物線,對稱軸方程為SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,故要定義域SKIPIF1<0上的值域為SKIPIF1<0,滿足題意的選項是:BC.故選:BC.題型14重點方法之換元法求值域【典例1】(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的值域為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.故選:A.【典例2】(2023秋·上海徐匯·高一上海中學??计谀┣蠛瘮?shù)SKIPIF1<0的值域.【答案】SKIPIF1<0函數(shù)定義域為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故函數(shù)值域為SKIPIF1<0.題型15重點方法之分離常數(shù)法求值域【典例1】(2023·全國·高三專題練習)求函數(shù)SKIPIF1<0的值域.【答案】SKIPIF1<0.【詳解】由函數(shù)SKIPIF1<0,可得其定義域為SKIPIF1<0,又由SKIPIF1<0,可得SKIPIF1<0所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.【典例2】(2023·全國·高一專題練習)求下列函數(shù)的值域:SKIPIF1<0【答案】SKIPIF1<0【詳解】因為SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的值域為SKIPIF1<0.題型16數(shù)學思想方法(數(shù)形結合的思想方法)【典例1】(2023·全國·高三對口高考)已知函數(shù)SKIPIF1<0的值域是SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】SKIPIF1<0,畫出圖像,如圖所示,
令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0(舍去)或SKIPIF1<0,對于A:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故A錯誤;對于B:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故B錯誤;對于C:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故C錯誤;對于D:當SKIPIF1<0時,結合圖像,得SKIPIF1<0,故D正確;故選:D.【典例2】(2023春·江蘇泰州·高一靖江高級中學??茧A段練習)若函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,則其值域為(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】函數(shù)SKIPIF1<0圖像可由SKIPIF1<0圖像向右平移一個單位得到,如圖所示:SKIPIF1<0,結合圖像可知,函數(shù)的值域為SKIPIF1<0.故選:D題型17易錯題(換元必換范圍)【典例1】(2023·全國·高一專題練習)求下列函數(shù)的值域:SKIPIF1<0.【答案】SKIPIF1<0【詳解】設SKIPIF1<0(換元),則SKIPIF1<0且SKIPIF1<0,令SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0的值域為SKIPIF1<0.【典例2】(2023·全國·高三專題練習)函數(shù)SKIPIF1<0的值域為___________.【答案】SKIPIF1<0【詳解】解:因為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0的值域為SKIPIF1<0;故答案為:SKIPIF1<03.1.1函數(shù)的概念A夯實基礎B能力提升C綜合素養(yǎng)A夯實基礎一、單選題1.(2023·重慶·高二統(tǒng)考學業(yè)考試)已知函數(shù)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年呼倫貝爾職業(yè)技術學院單招職業(yè)傾向性測試題庫匯編
- 2025年度土地互換與農(nóng)村土地制度改革合同
- 2025年度客戶價格保密與農(nóng)業(yè)科技合作開發(fā)合同
- 2025年度工地食堂員工滿意度調(diào)查與提升承包合同
- 2025年度夫妻雙方子女撫養(yǎng)權及探望權離婚協(xié)議書
- 2025年度房屋贈予與遺產(chǎn)分配協(xié)議
- 2025年度大型活動臨時聘用保安人員合作協(xié)議
- 2025年度人工智能教育平臺建設合同變更協(xié)議
- 互聯(lián)網(wǎng)平臺限用農(nóng)藥違規(guī)售賣現(xiàn)狀調(diào)研報告
- 2025年度總經(jīng)理聘任與質(zhì)量管理體系合同:提升產(chǎn)品質(zhì)量合作協(xié)議
- 中醫(yī)醫(yī)療技術手冊2013普及版
- 腹部血管解剖-1
- 結構化表達思維訓練(完整版)
- 介紹南京大學
- 2022嗜酸粒細胞增多相關性肺疾病診療中國專家共識
- SYT 6925-2021 鉆井用天然氣發(fā)動機及供氣站安全規(guī)程-PDF解密
- 養(yǎng)生館租賃協(xié)議合同
- 中考數(shù)學第二輪復習教案
- 供應室停水停電應急預案
- 《中醫(yī)常用護理技術基礎》課件-八綱辨證施護
- 魚燈非遺文化知識介紹
評論
0/150
提交評論