四川省富順二中高2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第1頁
四川省富順二中高2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第2頁
四川省富順二中高2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第3頁
四川省富順二中高2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第4頁
四川省富順二中高2024屆高二數(shù)學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

四川省富順二中高2024屆高二數(shù)學第一學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.用數(shù)學歸納法證明時,第一步應驗證不等式()A. B.C. D.2.已知橢圓的右焦點為,則正數(shù)的值是()A.3 B.4C.9 D.213.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.4.已知是定義在上的函數(shù),且對任意都有,若函數(shù)的圖象關于點對稱,且,則()A. B.C. D.5.在平面直角坐標系xOy中,點(0,4)關于直線x-y+1=0的對稱點為()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)6.函數(shù)在(0,e]上的最大值為()A.-1 B.1C.0 D.e7.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標原點的拋物線的方程是()A. B.C.或 D.或8.已知橢圓的左右焦點分別為,,過C上的P作y軸的垂線,垂足為Q,若四邊形是菱形,則C的離心率為()A. B.C. D.9.若直線的斜率為,則的傾斜角為()A. B.C. D.10.一部影片在4個單位輪流放映,每個單位放映一場,不同的放映次序有()A.種 B.4種C.種 D.種11.已知實數(shù),,則下列不等式恒成立的是()A. B.C. D.12.已知數(shù)列是等比數(shù)列,,是函數(shù)的兩個不同零點,則()A.16 B.C.14 D.二、填空題:本題共4小題,每小題5分,共20分。13.設,若不等式在上恒成立,則的取值范圍是______.14.已知橢圓的左焦點為,點在橢圓上且在軸的上方,若線段的中點在以原點為圓心,為半徑的圓上,則直線的斜率是_______.15.已知球的表面積為,則該球的體積為______.16.若,滿足約束條件,則的最大值為_____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值18.(12分)一個小島的周圍有環(huán)島暗礁,暗礁分布在以小島中心為圓心,半徑為的圓形區(qū)域內(nèi)(圓形區(qū)域的邊界上無暗礁),已知小島中心位于輪船正西處,港口位于小島中心正北處.(1)若,輪船直線返港,沒有觸礁危險,求的取值范圍?(2)若輪船直線返港,且必須經(jīng)過小島中心東北方向處補水,求的最小值.19.(12分)設:,:.(1)若命題“,是真命題”,求的取值范圍;(2)若是的充分不必要條件,求的取值范圍.20.(12分)在直角坐標系中,曲線C的參數(shù)方程為,(為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.(1)寫出曲線C的極坐標方程;(2)已知直線與曲線C相交于A,B兩點,求.21.(12分)已知橢圓的一個頂點為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點,直線BM與直線BN的斜率之積為,證明直線l過定點并求出該定點坐標22.(10分)已知函數(shù)(1)當在處取得極值時,求函數(shù)的解析式;(2)當?shù)臉O大值不小于時,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】取即可得到第一步應驗證不等式.【詳解】由題意得,當時,不等式為故選:B2、A【解析】由直接可得.【詳解】由題知,所以,因為,所以.故選:A3、D【解析】由題設易知四邊形為矩形,可得,結(jié)合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關鍵點點睛:由橢圓的對稱性及矩形性質(zhì)可得,由已知條件得到,進而得到橢圓參數(shù)的齊次式求離心率范圍.4、D【解析】令,代入可得,即得,再由函數(shù)的圖象關于點對稱,判斷得函數(shù)的圖象關于點對稱,即,則化簡可得,即函數(shù)的周期為,從而代入求解.【詳解】令,得,即,所以,因為函數(shù)的圖象關于點對稱,所以函數(shù)的圖象關于點對稱,即,所以,即,可得,則,故選:D.第II卷(非選擇題5、D【解析】設出點(0,4)關于直線的對稱點的坐標,根據(jù)題意列出方程組,解方程組即可【詳解】解:設點(0,4)關于直線x-y+1=0的對稱點是(a,b),則,解得:,故選:D6、A【解析】對函數(shù)求導,然后求出函數(shù)的單調(diào)區(qū)間,從而可求出函數(shù)的最大值【詳解】由,得,當時,,當,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以當時,取得最大值,故選:A7、C【解析】由分焦點在軸的正半軸上和焦點在軸的負半軸上,兩種情況討論設出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經(jīng)長為8,當拋物線的焦點在軸的正半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為;當拋物線的焦點在軸的負半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.8、C【解析】根據(jù)題意求出P點坐標,代入橢圓方程中,可整理得到關于a,c的等式,進一步整理為關于e的方程,解得答案.【詳解】如圖示:由題意可知,因為四邊形是菱形,所以,則,所以P點坐標為,將P點坐標為代入得:,整理得,故,由于,解得,所以,故選:C.9、C【解析】設直線l傾斜角為,根據(jù)題意得到,即可求解.【詳解】設直線l的傾斜角為,因為直線的斜率是,可得,又因為,所以,即直線的傾斜角為.故選:C.10、C【解析】根據(jù)題意得到一部影片在4個單位輪流放映,相當于四個單位進行全排列,即可得到答案.【詳解】一部影片在4個單位輪流放映,相當于四個單位進行全排列,所以不同的放映次序有種,故選:C11、C【解析】根據(jù)不等式性質(zhì)和作差法判斷大小依次判斷每個選項得到答案.【詳解】當時,不等式不成立,錯誤;,故錯誤正確;當時,不等式不成立,錯誤;故選:.【點睛】本題考查了不等式的性質(zhì),作差法判斷大小,意在考查學生對于不等式知識的綜合應用.12、B【解析】由題意得到,根據(jù)等比數(shù)列的性質(zhì)得到,化簡,即可求解.【詳解】由,是函數(shù)的兩個不同零點,可得,根據(jù)等比數(shù)列的性質(zhì),可得則.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構(gòu)造,利用導數(shù)求其最大值,結(jié)合已知不等式恒成立,即可確定的范圍.【詳解】令,則且,若得:;若得:;所以在上遞增,在上遞減,故,要使在上恒成立,即.故答案為:.14、【解析】結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標表示成圓的方程,與橢圓方程聯(lián)立可進一步求解.利用焦半徑及三角形中位線定理,則更為簡潔.【詳解】方法1:由題意可知,由中位線定理可得,設可得,聯(lián)立方程可解得(舍),點在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應用解析1:由題意可知,由中位線定理可得,即求得,所以.【點睛】本題主要考查橢圓的標準方程、橢圓的幾何性質(zhì)、直線與圓的位置關系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.15、【解析】設球半徑為,由球表面積求出,然后可得球的體積【詳解】設球半徑為,∵球的表面積為,∴,∴,∴該球的體積為故答案為【點睛】解答本題的關鍵是熟記球的表面積和體積公式,解題時由條件求得球的半徑后可得所求結(jié)果16、6【解析】首先根據(jù)題中所給的約束條件,畫出相應的可行域,再將目標函數(shù)化成斜截式,之后在圖中畫出直線,在上下移動的過程中,結(jié)合的幾何意義,可以發(fā)現(xiàn)直線過B點時取得最大值,聯(lián)立方程組,求得點B的坐標代入目標函數(shù)解析式,求得最大值.【詳解】根據(jù)題中所給的約束條件,畫出其對應的可行域,如圖所示:由,可得,畫出直線,將其上下移動,結(jié)合的幾何意義,可知當直線在y軸截距最大時,z取得最大值,由,解得,此時,故答案為6.點睛:該題考查的是有關線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應的可行域,之后根據(jù)目標函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個點是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標,代入求值,要明確目標函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應用相應的方法求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)連接BD交AC于點E,連接ME,由所給條件推理出CA⊥AD,進而得CA⊥平面PAD,證得結(jié)論(2)首先以A為原點,射線AC,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,再利用向量法求解二面角即可【小問1詳解】(1)連接BD交AC于點E,連接ME,如圖所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,則BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90o,∠CAD=90o,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小問2詳解】(2)如圖所示:以A為原點,射線AC,AD,AP分別為x,y,z軸非負半軸建立空間直角坐標系,則,∴,設平面PAB和平面MAC的一個法向量分別為,平面PAB和平面MAC所成銳二面角為,∴,,∴.18、(1)(2)120【解析】(1)建立平面直角坐標系設直線方程,根據(jù)點到直線的距離公式可得;(2)先求補水點的坐標,根據(jù)直線過該點,結(jié)合所求,根據(jù)基本不等式可得.【小問1詳解】根據(jù)題意,以小島中心為原點,建立平面直角坐標系,當時,則輪船返港的直線為,因為沒有觸礁危險,所以原點到的距離,解得.【小問2詳解】根據(jù)題意可得,,點C在直線上,故點C,設輪船返港的直線是,則,所以.當且僅當時取到最小值.19、(1)(2)【解析】(1)解不等式得到解集,根據(jù)題意列出不等式組,求出的取值范圍;(2)先解不等式,再根據(jù)充分不必要條件得到是的真子集,進而求出的取值范圍.【小問1詳解】因為,由可得:,因為“,”為真命題,所以,即,解得:.即的取值范圍是.【小問2詳解】因為,由可得:,,因為是的充分不必要條件,所以是的真子集,所以(等號不同時?。?,解得:,即的取值范圍是.20、(1);(2).【解析】(1)首先將圓的參數(shù)方程華為普通方程,再轉(zhuǎn)化為極坐標方程即可.(2)首先聯(lián)立得到,再求的長度即可.【詳解】(1)將曲線C的參數(shù)方程,(為參數(shù))化為普通方程,得,極坐標方程為.(2)聯(lián)立方程組,消去得,設點A,B對應的極徑分別為,,則,,所以.21、(1);(2)答案見解析,直線過定點.【解析】(1)首先根據(jù)頂點為得到,再根據(jù)離心率為得到,從而得到橢圓C的方程.(2)設,,,與橢圓聯(lián)立得到,利用直線BM與直線BN的斜率之積為和根系關系得到,從而得到直線恒過的定點.【詳解】(1)一個頂點為,故,又,即,所以故橢圓的方程為(2)若直線l的斜率不存在,設,,此時,與題設矛盾,故直線l斜率必存在設,,,聯(lián)立得,∴,∵,即∴,化為,解得或(舍去),即直線過定點【點睛】方法點睛:定點問題,一般從三個方法把握:(1)從特殊情

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論