版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
濰坊市重點中學2023年高二上數(shù)學期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓的右焦點為,為坐標原點,為軸上一點,點是直線與橢圓的一個交點,且,則橢圓的離心率為()A. B.C. D.2.已知圓和圓恰有三條公共切線,則的最小值為()A.6 B.36C.10 D.3.已知數(shù)列的通項公式為,則()A.12 B.14C.16 D.184.實數(shù)m變化時,方程表示的曲線不可以是()A.直線 B.圓C橢圓 D.雙曲線5.直線的傾斜角為()A. B.C. D.6.總體有編號為01,02,…,19,20的20個個體組成,利用下面的隨機數(shù)表選取3個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第3個個體的編號為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.147.已知、,直線,,且,則的最小值為()A. B.C. D.8.已知向量,若,則()A. B.5C.4 D.9.橢圓=1的一個焦點為F,過原點O作直線(不經過焦點F)與橢圓交于A,B兩點,若△ABF的面積是20,則直線AB的斜率為()A. B.C. D.10.中國歷法推測遵循以測為輔,以算為主的原則.例如《周髀算經》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計算得出的.二十四節(jié)氣中,從冬至到夏至的十三個節(jié)氣依次為:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種、夏至.已知《周髀算經》中記錄某年的冬至的晷影長為13尺,夏至的晷影長是1.48尺,按照上述規(guī)律,那么《周髀算經》中所記錄的立夏的晷影長應為()A.尺 B.尺C.尺 D.尺11.命題,,則是()A., B.,C., D.,12.若實數(shù)滿足,則點不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案.通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖,則a=______________14.平面直角坐標系內動點M()與定點F(4,0)的距離和M到定直線的距離之比是常數(shù),則動點M的軌跡是___________15.已知數(shù)列滿足,將數(shù)列按如下方式排列成新數(shù)列:,,,,,,,,,…,,….則新數(shù)列的前70項和為______16.復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù)______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列滿足:成等差數(shù)列,成等比數(shù)列.(1)求的通項公式:(2)在數(shù)列的每相鄰兩項與間插入個,使它們和原數(shù)列的項構成一個新數(shù)列,數(shù)列的前項和記為,求及.18.(12分)已知拋物線的焦點到準線的距離為,過點的直線與拋物線只有一個公共點.(1)求拋物線的方程;(2)求直線的方程.19.(12分)2017年國家提出鄉(xiāng)村振興戰(zhàn)略目標:2020年取得重要進展,制度框架和政策體系基本形成;2035年取得決定性進展,農業(yè)農村現(xiàn)代化基本實現(xiàn);2050年鄉(xiāng)村全面振興,農業(yè)強、農村美、農民富全面實現(xiàn).某地為實現(xiàn)鄉(xiāng)村振興,對某農產品加工企業(yè)調研得到該企業(yè)2012年到2020年盈利情況:年份201220132014201520162017201820192020年份代碼x123456789盈利y(百萬)6.06.16.26.06.46.96.87.17.0(1)根據(jù)表中數(shù)據(jù)判斷年盈利y與年份代碼x是否具有線性相關性;(2)若年盈利y與年份代碼x具有線性相關性,求出線性回歸方程并根據(jù)所求方程預測該企業(yè)2021年年盈利(結果保留兩位小數(shù))參考數(shù)據(jù)及公式:,,,,,統(tǒng)計中用相關系數(shù)r來衡量變量y,x之間的線性關系的強弱,當時,變量y,x線性相關20.(12分)自我國爆發(fā)新冠肺炎疫情以來,各地醫(yī)療單位都加緊了醫(yī)療用品的生產.某醫(yī)療器械廠統(tǒng)計了口罩生產車間每名工人的生產速度,并將所得數(shù)據(jù)分成五組并繪制出如圖所示的頻率分布直方圖.已知前四組的頻率成等差數(shù)列,第五組與第二組的頻率相等(1)估計口罩生產車間工人生產速度的中位數(shù)(結果寫成分數(shù)的形式);(2)為了解該車間工人的生產速度是否與他們的工作經驗有關,現(xiàn)從車間所有工人中隨機抽樣調查了5名工人的生產速度以及他們的工齡(參加工作的年限),數(shù)據(jù)如下表:工齡x(單位:年)4681012生產速度y(單位:件/小時)4257626267根據(jù)上述數(shù)據(jù)求每名工人的生產速度y關于他的工齡x的回歸方程,并據(jù)此估計該車間某位有16年工齡的工人的生產速度附:回歸方程中斜率和截距的最小二乘估計公式為:,21.(12分)在等差數(shù)列中,,前10項和(1)求列通項公式;(2)若數(shù)列是首項為1,公比為2的等比數(shù)列,求的前8項和22.(10分)如圖,四棱錐的底面為正方形,底面,設平面與平面的交線為.(1)證明:;(2)已知,為直線上的點,求與平面所成角的正弦值的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設橢圓的左焦點為,由橢圓的對稱性可知,則,所以,即可得到的關系,利用橢圓的定義進而求得離心率.【詳解】設橢圓的左焦點為,連接,因為,所以,如圖所示,所以,設,,則,所以,故選:D.2、B【解析】由公切線條數(shù)得兩圓外切,由此可得的關系,從而點在以原點為圓心,4為半徑的圓上,記,由求得的最小值,平方后即得結論【詳解】圓標準方程為,,半徑為,圓標準方程為,,半徑為,兩圓有三條公切線,則兩圓外切,所以,即,點在以原點為圓心,4為半徑的圓上,記,,所以,所以的最小值為故選:B3、D【解析】利用給定的通項公式直接計算即得.【詳解】因數(shù)列的通項公式為,則有,所以.故選:D4、B【解析】根據(jù)的取值分類討論說明【詳解】時方程化為,為直線,時,方程化為,為橢圓,時,方程化為,為雙曲線,而,因此曲線不可能是圓故選:B5、D【解析】若直線傾斜角為,由題設有,結合即可得傾斜角的大小.【詳解】由直線方程,若其傾斜角為,則,而,∴.故選:D6、D【解析】由隨機數(shù)表法抽樣原理即可求出答案.【詳解】根據(jù)題意,依次讀出的數(shù)據(jù)為65(舍去),72(舍去),08,02,63(舍去),14,即第三個個體編號為14.故選:D.7、D【解析】先由,可得,變形得,所以,化簡后利用基本不等式求解即可【詳解】因為、,直線,,且,所以,即,所以,所以,所以,當且僅當,即時,取等號,所以的最小值為,故選:D8、B【解析】根據(jù)向量垂直列方程,化簡求得.【詳解】由于,所以.故選:B9、A【解析】分情況討論當直線AB的斜率不存在時,可求面積,檢驗是否滿足條件,當直線AB的斜率存在時,可設直線AB的方程y=kx,聯(lián)立橢圓方程,可求△ABF2的面積為S=2代入可求k【詳解】由橢圓=1,則焦點分別為F1(-5,0),F(xiàn)2(5,0),不妨取F(5,0)①當直線AB的斜率不存在時,直線AB的方程為x=0,此時AB=4,=AB?5=×5=10,不符合題意;②可設直線AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面積為S=2=2××5×=20,∴k=±故選:A10、B【解析】根據(jù)等差數(shù)列定義求得公差,再求解立夏的晷影長在數(shù)列中所對應的項即可【詳解】設從冬至到夏至的十三個節(jié)氣依次為等差數(shù)列的前13項,則所以公差為,則立夏的晷影長應為(尺)故選:B11、D【解析】根據(jù)特稱命題的否定為全稱命題,即可得到答案.【詳解】因為命題,,所以,.故選:D12、B【解析】作出給定的不等式組表示的平面區(qū)域,觀察圖形即可得解.【詳解】因實數(shù)滿足,作出不等式組表示的平面區(qū)域,如圖中陰影部分,觀察圖形知,陰影區(qū)域不過第二象限,即點不可能落在第二象限.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3##【解析】由頻率之和等于1,即矩形面積之和為1可得.【詳解】由題知,解得.故答案為:0.314、【解析】根據(jù)直接法,即可求軌跡.【詳解】解:動點與定點的距離和它到定直線的距離之比是常數(shù),根據(jù)題意得,點的軌跡就是集合,由此得.將上式兩邊平方,并化簡,得所以,動點的軌跡是長軸長、短軸長分別為12、的橢圓故答案為:15、##2.9375【解析】先根據(jù)題干條件得到,再利用錯位相減法求前64項和,最后求出前70項和.【詳解】①,當時,;當時,②,①-②得:,即又滿足,所以由,得令,則,兩式相減得,則所以新數(shù)列的前70項和為故答案為:16、##【解析】根據(jù)共軛復數(shù)的概念,即可得答案.【詳解】由題意可知:復數(shù)(其中i為虛數(shù)單位)的共軛復數(shù),故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2),.【解析】(1)根據(jù)等差數(shù)列和等比數(shù)列的通項公式進行求解即可;(2)根據(jù)等差數(shù)列的通項公式,結合等比數(shù)列的前項和公式進行求解即可.【小問1詳解】設等差數(shù)列的公差為,因為成等差數(shù)列,所以有,因成等比數(shù)列,所以,所以;【小問2詳解】由題意可知:在和之間插入個,在和之間插入個,,在和之間插入個,此時共插入的個數(shù)為:,在和之間插入個,此時共插入的個數(shù)為:,因此.18、(1);(2)或或.【解析】(1)根據(jù)給定條件結合p的幾何意義,直接求出p寫出方程作答.(2)直線l的斜率存在設出其方程,再與拋物線C的方程聯(lián)立,再討論計算,l斜率不存在時驗證作答.【小問1詳解】因拋物線的焦點到準線的距離為,于是得,所以拋物線的方程為.【小問2詳解】當直線的斜率存在時,設直線為,由消去y并整理得:,當時,,點是直線與拋物線唯一公共點,因此,,直線方程為,當時,,此時直線與拋物線相切,直線方程為,當直線的斜率不存在時,y軸與拋物線有唯一公共點,直線方程為,所以直線方程為為或或.19、(1)年盈利y與年份代碼x具有線性相關性(2),7.25百萬元【解析】(1)根據(jù)表中的數(shù)據(jù)和提供的公式計算即可;(2)先求線性回歸方程,再代入計算即可【小問1詳解】由表中的數(shù)據(jù)得,,,,因為,所以年盈利y與年份代碼x具有線性相關性【小問2詳解】,,,當時,,該企業(yè)2021年年盈利約為7.25百萬元20、(1)(2)80件/小時【解析】(1)先利用等差數(shù)列的通項公式和頻率分布直方圖各矩形的面積之和為1求出各組頻率,再利用頻率分布直方圖求中位數(shù);(2)先求出、,利用最小二乘法求出回歸直線方程,再進行預測其生產速度.【小問1詳解】解:設前4組的頻率分別為,,,,公差為,由頻率分布直方圖,得,即,解得,則,,所以中位數(shù)為.【小問2詳解】解:由題意,得,,由所給公式,得,,所以回歸直線方程為,則當時,,即估計該車間某位有16年工齡的工人的生產速度為80件/小時.21、(1);(2)347.【解析】(1)設等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項和為22、(1)證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年滑叉項目投資價值分析報告
- 開開股合同范例
- 基坑支護勞務合同范例
- 房子維護合同范例
- 陜西師范大學《植物逆境分子生物學》2023-2024學年第一學期期末試卷
- 2024年聚酯工業(yè)長絲項目可行性研究報告
- 機械設備保修合同范例
- 商鋪代收快遞合同范例
- 店鋪轉讓美甲店合同范例
- 2024至2030年蘋果切片機項目投資價值分析報告
- 線上客服外包合作協(xié)議書范文
- 2023-2024-深圳某中學初二年級上冊數(shù)學期末測試卷
- 企業(yè)社會責任(CSR)與可持續(xù)發(fā)展規(guī)章制度
- 員工的工作態(tài)度指標評分標準示例-企業(yè)管理
- 供水設備相關項目實施方案
- 2024版年度中華人民共和國傳染病防治法
- 辰顯光電微型發(fā)光二極管(Micro-LED)生產基地項目環(huán)評報告表
- 2025屆高考英語大作文讀后續(xù)寫寫作思路與技巧課件
- 醫(yī)師定期考核人文醫(yī)學模擬考試500題(含參考答案)
- 工業(yè)園物業(yè)管理方案
- 鋁粉采購供應合同
評論
0/150
提交評論