版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
新疆伊西哈拉鎮(zhèn)中學(xué)2023年高二上數(shù)學(xué)期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線上的點到該拋物線焦點的距離為,則拋物線的方程是()A. B.C. D.2.(一)單項選擇函數(shù)在處的導(dǎo)數(shù)等于()A.0 B.C.1 D.e3.命題:“,”的否定是()A., B.,C., D.,4.方程表示的曲線為()A.拋物線與一條直線 B.上半拋物線(除去頂點)與一條直線C.拋物線與一條射線 D.上半拋物線(除去頂點)與一條射線5.直線的傾斜角為()A. B.C. D.6.據(jù)有關(guān)文獻記載:我國古代一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)比上一層燈數(shù)都多為常數(shù)盞,底層的燈數(shù)是頂層的倍,則塔的底層共有燈()A.盞 B.盞C.盞 D.盞7.已知拋物線的焦點為F,過點F作傾斜角為的直線l與拋物線交于兩點,則POQ(O為坐標(biāo)原點)的面積S等于()A. B.C. D.8.在空間直角坐標(biāo)系中,,,平面的一個法向量為,則平面與平面夾角的正弦值為()A. B.C. D.9.已知點,,若直線過點且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.10.等比數(shù)列,,,成公差不為0的等差數(shù)列,,則數(shù)列的前10項和()A. B.C. D.11.已知函數(shù)(為自然對數(shù)的底數(shù)),若的零點為,極值點為,則()A. B.0C.1 D.212.橢圓焦距為()A. B.8C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.若正實數(shù)滿足則的最小值為________________________14.已知拋物線的焦點與的右焦點重合,則__________.15.已知圓M過,,且圓心M在直線上.(1)求圓M的標(biāo)準(zhǔn)方程;(2)過點的直線m截圓M所得弦長為,求直線m的方程;16.一條直線經(jīng)過,并且傾斜角是直線的傾斜角的2倍,則直線的方程為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處取得極值(1)求實數(shù)a的值;(2)若函數(shù)在內(nèi)有零點,求實數(shù)b的取值范圍18.(12分)根據(jù)下列條件求圓的方程:(1)圓心在點O(0,0),半徑r=3(2)圓心在點O(0,0),且經(jīng)過點M(3,4)19.(12分)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是AB、PC的中點(1)求證:平面MND⊥平面PCD;(2)求點P到平面MND的距離20.(12分)已知為數(shù)列的前項和,且(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和(3)設(shè),若不等式對一切恒成立,求實數(shù)取值范圍21.(12分)已知數(shù)列的前項的和為,且.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.22.(10分)已知函數(shù)(1)若,求曲線在處的切線方程(2)討論函數(shù)的單調(diào)性
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由拋物線知識得出準(zhǔn)線方程,再由點到焦點的距離等于其到準(zhǔn)線的距離求出,從而得出方程.【詳解】由題意知,則準(zhǔn)線為,點到焦點的距離等于其到準(zhǔn)線的距離,即,∴,則故選:B.2、B【解析】利用導(dǎo)數(shù)公式求解.【詳解】因為函數(shù),所以,所以,故選;B3、D【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】由全稱量詞命題的否定可知,命題“,”的否定是“,”.故選:D.4、B【解析】化簡得出或,由此可得出方程表示的曲線.【詳解】由可得或,所以,方程表示的曲線為上半拋物線(除去頂點)與一條直線,故選:B.5、D【解析】若直線傾斜角為,由題設(shè)有,結(jié)合即可得傾斜角的大小.【詳解】由直線方程,若其傾斜角為,則,而,∴.故選:D6、C【解析】根據(jù)給定條件利用等差數(shù)列前n項和公式列式計算即可作答.【詳解】依題意,層塔從上層到下層掛燈盞數(shù)依次排成一列可得等差數(shù)列,,于是得,解得,,所以塔的底層共有燈盞.故選:C7、A【解析】由拋物線的方程可得焦點的坐標(biāo),由題意設(shè)直線的方程,與拋物線的方程,聯(lián)立求出兩根之和及兩根之積,進而求出,的縱坐標(biāo)之差的絕對值,代入三角形的面積公式求出面積【詳解】拋物線的焦點為,,由題意可得直線的方程為,設(shè),,,,聯(lián)立,整理可得:,則,,所以,所以,故選:A8、A【解析】根據(jù)給定條件求出平面的法向量,再借助空間向量夾角公式即可計算作答.【詳解】設(shè)平面的法向量為,則,令,得,令平面與平面夾角為,則,,所以平面與平面夾角的正弦值為.故選:A9、B【解析】直接利用兩點間的坐標(biāo)公式和直線的斜率的關(guān)系求出結(jié)果【詳解】解:直線過點且斜率為,與連接兩點,的線段有公共點,由圖,可知,,當(dāng)時,直線與線段有交點故選:B10、C【解析】先設(shè)等比數(shù)列的公比為,結(jié)合條件可知,由等差中項可知,利用等比數(shù)列的通項公式進行化簡求出,最后利用分組求和法,以及等比數(shù)列、等差數(shù)列的求和公式,即可求出數(shù)列的前10項和.【詳解】設(shè)等比數(shù)列的公比為,,,成公差不為0的等差數(shù)列,則,,都不相等,,且,,,,即,解得:或(舍去),,所以數(shù)列的前10項和:.故選:C.11、C【解析】令可求得其零點,即的值,再利用導(dǎo)數(shù)可求得其極值點,即的值,從而可得答案【詳解】解:,當(dāng)時,,即,解得;當(dāng)時,恒成立,的零點為又當(dāng)時,為增函數(shù),故在,上無極值點;當(dāng)時,,,當(dāng)時,,當(dāng)時,,時,取到極小值,即的極值點,故選:C【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)的零點,考查分段函數(shù)的應(yīng)用,突出分析運算能力的考查,屬于中檔題12、A【解析】由題意橢圓的焦點在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點在軸上故焦距故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用基本不等式即可求解.【詳解】,,又,,,當(dāng)且僅當(dāng)即,等號成立,.故答案為:【點睛】易錯點睛:利用基本不等式求最值時,要注意其必須滿足的三個條件:(1)“一正二定三相等”“一正”就是各項必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時,必須驗證等號成立的條件,若不能取等號則這個定值就不是所求的最值,這也是最容易發(fā)生錯誤的地方.14、【解析】求出拋物線的焦點坐標(biāo)即為的右焦點可得答案.【詳解】由題意可知:拋物線的焦點坐標(biāo)為,由題意知表示焦點在軸的橢圓,在橢圓中:,所以,因為,所以.故答案為:.15、(1)(2)或【解析】(1)首先由條件設(shè)圓的標(biāo)準(zhǔn)方程,再將圓上兩點代入,即可求得圓的標(biāo)準(zhǔn)方程;(2)分斜率不存在和存在兩種情況,分別根據(jù)弦長公式,求得直線方程.【小問1詳解】圓心在直線上,設(shè)圓的標(biāo)準(zhǔn)方程為:,圓過點,,,解得圓的標(biāo)準(zhǔn)方程為【小問2詳解】①當(dāng)斜率不存在時,直線m的方程為:,直線m截圓M所得弦長為,符合題意②當(dāng)斜率存在時,設(shè)直線m:,圓心M到直線m的距離為根據(jù)垂徑定理可得,,,解得直線m方程為或.16、【解析】先求出直線傾斜角,從而可求得直線的傾斜角,則可求出直線的斜率,進而可求出直線的方程【詳解】因為直線的斜率為,所以直線的傾斜角為,所以直線的傾斜角為,所以直線的斜率為,因為直線經(jīng)過,所以直線的方程為,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由題意可得,從而可求出a的值;(2)先對函數(shù)求導(dǎo),求得函數(shù)的單調(diào)區(qū)間,從而可由函數(shù)的變化情況可知,要函數(shù)在內(nèi)有零點,只要函數(shù)在內(nèi)的最大值大于等于零,最小值小于等于零,然后解不等式組可得答案【詳解】解:(1)在處取得極值,∴,∴.經(jīng)驗證時,在處取得極值(2)由(1)知,∴極值點為2,.將x,,在內(nèi)的取值列表如下:x024/-0+/b極小值由此可得,在內(nèi)有零點,只需∴18、(1)x2+y2=9(2)x2+y2=25【解析】(1)直接根據(jù)圓心坐標(biāo)和半徑,即可得到答案;(2)利用兩點間的距離公式,求出圓的半徑,即可得到答案;【小問1詳解】根據(jù)題意,圓心在點O(0,0),半徑r=3,則要求圓的方程為x2+y2=9;【小問2詳解】圓心在點O(0,0),且經(jīng)過點M(3,4),要求圓的半徑r==5,則要求圓的方程為x2+y2=25;19、(1)見解析;(2)【解析】(1)作出如圖所示空間直角坐標(biāo)系,根據(jù)題中數(shù)據(jù)可得、、的坐標(biāo),利用垂直向量數(shù)量積為零的方法算出平面、平面的法向量分別為,,和,1,,算出,可得,從而得出平面平面;(2)由(1)中求出的平面法向量,,與向量,2,,利用點到平面的距離公式加以計算即可得到點到平面的距離【詳解】(1)證明:平面,,、、兩兩互相垂直,如圖所示,分別以、、所在直線為軸、軸和軸建立空間直角坐標(biāo)系,則,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,設(shè),,是平面的一個法向量,可得,取,得,,,,是平面的一個法向量,同理可得,1,是平面的一個法向量,,,即平面的法向量與平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一個法向量,,2,,得,點到平面的距離20、(1);(2);(3).【解析】(1)利用的關(guān)系,根據(jù)等比數(shù)列的定義求通項公式.(2)由(1)可得,應(yīng)用裂項相消法求.(3)應(yīng)用錯位相減法求得,由題設(shè)有,討論為奇數(shù)、偶數(shù)求的取值范圍【小問1詳解】當(dāng)時,,可得,當(dāng)時,,可得,∴是首項、公比都為的等比數(shù)列,故.【小問2詳解】由(1),,∴.【小問3詳解】由題設(shè),,∴,則,∴,由對一切恒成立,令,則,∴數(shù)列單調(diào)遞減,∴當(dāng)為奇數(shù),恒成立且在上遞減,則,當(dāng)為偶數(shù),恒成立且在上遞增,則,綜上,.21、(1);(2).【解析】(1)根據(jù),并結(jié)合等比數(shù)列的定義即可求得答案;(2)結(jié)合(1),并通過錯位相減法即可求得答案.【小問1詳解】當(dāng)時,,當(dāng)時,,是以2為首項,2為公比的等比數(shù)列,.【小問2詳解】,…①…②①-②得,.22、(1)(2)答案見
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)生課間健身課件視頻
- 中級消防監(jiān)控室培訓(xùn)課件
- 三年級科學(xué)上冊第二單元人與植物教材說明首師大版
- 2022年東北電力大學(xué)自考英語(二)練習(xí)題(附答案解析)
- 教學(xué)課件制作培訓(xùn)總結(jié)
- 安全鏈控制系統(tǒng)課件
- 指南培訓(xùn)課件
- 上半年大班第二學(xué)期班務(wù)參考計劃
- 人教部編版二年級下冊所有必須背誦的古詩和課文
- 大班交通安全日課件
- 蓄勢聚能籌遠略揚帆破浪啟新航-在2025年務(wù)虛會上的講話提綱
- 2025山東濰坊光明電力服務(wù)限公司招聘142人管理單位筆試遴選500模擬題附帶答案詳解
- 《診斷教學(xué)胸腔積液》課件
- 山東省濟南市2023-2024學(xué)年高二上學(xué)期期末考試生物試題 附答案
- DB32T 3292-2017 大跨徑橋梁鋼橋面環(huán)氧瀝青混凝土鋪裝養(yǎng)護技術(shù)規(guī)程
- 形容詞副詞(專項訓(xùn)練)-2023年中考英語二輪復(fù)習(xí)
- 2024人力行政年終總結(jié)
- 2024國家開放大學(xué)【法理學(xué)】形考試題及答案(二)
- GB 44495-2024汽車整車信息安全技術(shù)要求
- 2025年全年日歷含農(nóng)歷(1月-12月)
- 多學(xué)科聯(lián)合診療(MDT)管理方案
評論
0/150
提交評論