![初一數(shù)學下冊期末壓軸題測試題(含答案)-解析_第1頁](http://file4.renrendoc.com/view/069b6cade5b51785dcded3c9f629b2be/069b6cade5b51785dcded3c9f629b2be1.gif)
![初一數(shù)學下冊期末壓軸題測試題(含答案)-解析_第2頁](http://file4.renrendoc.com/view/069b6cade5b51785dcded3c9f629b2be/069b6cade5b51785dcded3c9f629b2be2.gif)
![初一數(shù)學下冊期末壓軸題測試題(含答案)-解析_第3頁](http://file4.renrendoc.com/view/069b6cade5b51785dcded3c9f629b2be/069b6cade5b51785dcded3c9f629b2be3.gif)
![初一數(shù)學下冊期末壓軸題測試題(含答案)-解析_第4頁](http://file4.renrendoc.com/view/069b6cade5b51785dcded3c9f629b2be/069b6cade5b51785dcded3c9f629b2be4.gif)
![初一數(shù)學下冊期末壓軸題測試題(含答案)-解析_第5頁](http://file4.renrendoc.com/view/069b6cade5b51785dcded3c9f629b2be/069b6cade5b51785dcded3c9f629b2be5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
一、解答題1.如圖,已知,,且滿足.(1)求、兩點的坐標;(2)點在線段上,、滿足,點在軸負半軸上,連交軸的負半軸于點,且,求點的坐標;(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點,過作軸于,若,且,求點的坐標.2.已知點C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過點O′作OB的垂線,與∠OCD的平分線交于點P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.3.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內(nèi)部,且于,求證:平分;(3)在(2)的條件下,過點作,分別交、于點、,繞著點旋轉(zhuǎn),但與、始終有交點,問:的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.4.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數(shù).小明的思路是:過P作PE∥AB,通過平行線性質(zhì),可得∠APC=∠APE+∠CPE=50°+60°=110°.問題解決:(1)如圖2,AB∥CD,直線l分別與AB、CD交于點M、N,點P在直線I上運動,當點P在線段MN上運動時(不與點M、N重合),∠PAB=α,∠PCD=β,判斷∠APC、α、β之間的數(shù)量關(guān)系并說明理由;(2)在(1)的條件下,如果點P在線段MN或NM的延長線上運動時.請直接寫出∠APC、α、B之間的數(shù)量關(guān)系;(3)如圖3,AB∥CD,點P是AB、CD之間的一點(點P在點A、C右側(cè)),連接PA、PC,∠BAP和∠DCP的平分線交于點Q.若∠APC=116°,請結(jié)合(2)中的規(guī)律,求∠AQC的度數(shù).5.已知:如圖(1)直線AB、CD被直線MN所截,∠1=∠2.(1)求證:AB//CD;(2)如圖(2),點E在AB,CD之間的直線MN上,P、Q分別在直線AB、CD上,連接PE、EQ,PF平分∠BPE,QF平分∠EQD,則∠PEQ和∠PFQ之間有什么數(shù)量關(guān)系,請直接寫出你的結(jié)論;(3)如圖(3),在(2)的條件下,過P點作PH//EQ交CD于點H,連接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度數(shù).6.(1)如圖①,若∠B+∠D=∠E,則直線AB與CD有什么位置關(guān)系?請證明(不需要注明理由).(2)如圖②中,AB//CD,又能得出什么結(jié)論?請直接寫出結(jié)論.(3)如圖③,已知AB//CD,則∠1+∠2+…+∠n-1+∠n的度數(shù)為.7.閱讀型綜合題對于實數(shù)我們定義一種新運算(其中均為非零常數(shù)),等式右邊是通常的四則運算,由這種運算得到的數(shù)我們稱之為線性數(shù),記為,其中叫做線性數(shù)的一個數(shù)對.若實數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時的叫做正格線性數(shù)的正格數(shù)對.(1)若,則,;(2)已知,.若正格線性數(shù),(其中為整數(shù)),問是否有滿足這樣條件的正格數(shù)對?若有,請找出;若沒有,請說明理由.8.閱讀材料:求值:,解答:設(shè),將等式兩邊同時乘2得:,將得:,即.請你類比此方法計算:.其中n為正整數(shù)9.閱讀下列解題過程:為了求的值,可設(shè),則,所以得,所以;仿照以上方法計算:(1).(2)計算:(3)計算:10.對非負實數(shù)“四舍五入”到各位的值記為.即:當為非負整數(shù)時,如果,則;反之,當為非負整數(shù)時,如果,則.例如:,.(1)計算:;;(2)①求滿足的實數(shù)的取值范圍,②求滿足的所有非負實數(shù)的值;(3)若關(guān)于的方程有正整數(shù)解,求非負實數(shù)的取值范圍.11.三個自然數(shù)x、y、z組成一個有序數(shù)組,如果滿足,那么我們稱數(shù)組為“蹦蹦數(shù)組”.例如:數(shù)組中,故是“蹦蹦數(shù)組”;數(shù)組中,故不是“蹦蹦數(shù)組”.(1)分別判斷數(shù)組和是否為“蹦蹦數(shù)組”;(2)s和t均是三位數(shù)的自然數(shù),其中s的十位數(shù)字是3,個位數(shù)字是2,t的百位數(shù)字是2,十位數(shù)字是5,且.是否存在一個整數(shù)b,使得數(shù)組為“蹦蹦數(shù)組”.若存在,求出b的值;若不存在,請說明理由;(3)有一個三位數(shù)的自然數(shù),百位數(shù)字是1,十位數(shù)字是p,個位數(shù)字是q,若數(shù)組為“蹦蹦數(shù)組”,且該三位數(shù)是7的倍數(shù),求這個三位數(shù).12.定義:如果,那么稱b為n的布谷數(shù),記為.例如:因為,所以,因為,所以.(1)根據(jù)布谷數(shù)的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數(shù)有如下運算性質(zhì):若m,n為正整數(shù),則,.根據(jù)運算性質(zhì)解答下列各題:①已知,求和的值;②已知.求和的值.13.已知A(0,a)、B(b,0),且+(b﹣4)2=0.(1)直接寫出點A、B的坐標;(2)點C為x軸負半軸上一點滿足S△ABC=15.①如圖1,平移直線AB經(jīng)過點C,交y軸于點E,求點E的坐標;②如圖2,若點F(m,10)滿足S△ACF=10,求m.(3)如圖3,D為x軸上B點右側(cè)的點,把點A沿y軸負半軸方向平移,過點A作x軸的平行線l,在直線l上取兩點G、H(點H在點G右側(cè)),滿足HB=8,GD=6.當點A平移到某一位置時,四邊形BDHG的面積有最大值,直接寫出面積的最大值.14.綜合與實踐課上,同學們以“一個直角三角形和兩條平行線”為背景開展數(shù)學活動,如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.(3)如圖3,若∠A=30°,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請寫出與的數(shù)量關(guān)系并說明理由.15.如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足,過C作軸于B,(1)求a,b的值;(2)在y軸上是否存在點P,使得△ABC和△OCP的面積相等,若存在,求出點P坐標,若不存在,試說明理由.(3)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,圖3,①求:∠CAB+∠ODB的度數(shù);②求:∠AED的度數(shù).16.某水果店到水果批發(fā)市場采購蘋果,師傅看中了甲、乙兩家某種品質(zhì)一樣的蘋果,零售價都為8元/千克,批發(fā)價各不相同,甲家規(guī)定:批發(fā)數(shù)量不超過100千克,全部按零價的九折優(yōu)惠;批發(fā)數(shù)量超過100千克全部按零售價的八五折優(yōu)惠,乙家的規(guī)定如下表:數(shù)量范圍(千克)不超過50的部分50以上但不超過150的部分150以上的部分價格(元)零售價的95%零售價的85%零售價的75%(1)如果師傅要批發(fā)240千克蘋果選擇哪家批發(fā)更優(yōu)惠?(2)設(shè)批發(fā)x千克蘋果(),問師傅應(yīng)怎樣選擇兩家批發(fā)商所花費用更少?17.如圖,在平面直角坐標系xOy中,對于任意兩點A(x1,y1)與B(x2,y2)的“非常距離”,給出如下定義:若|x1﹣x2|≥|y1﹣y2|,則點A與點B的“非常距離”為|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,則點A與點B的“非常距離”為|y1﹣y2|.(1)填空:已知點A(3,6)與點B(5,2),則點A與點B的“非常距離”為;(2)已知點C(﹣1,2),點D為y軸上的一個動點.①若點C與點D的“非常距離”為2,求點D的坐標;②直接寫出點C與點D的“非常距離”的最小值.18.在平面直角坐標系中,點,的坐標分別為,,現(xiàn)將線段先向上平移3個單位,再向右平移1個單位,得到線段,連接,.(1)如圖1,求點,的坐標及四邊形的面積;圖1(2)如圖1,在軸上是否存在點,連接,,使?若存在這樣的點,求出點的坐標;若不存在,試說明理由;(3)如圖2,在直線上是否存在點,連接,使?若存在這樣的點,直接寫出點的坐標;若不存在,試說明理由.圖2(4)在坐標平面內(nèi)是否存在點,使?若存在這樣的點,直接寫出點的坐標的規(guī)律;若不存在,請說明理由.19.如圖,已知,,且滿足.(1)求、兩點的坐標;(2)點在線段上,、滿足,點在軸負半軸上,連交軸的負半軸于點,且,求點的坐標;(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點,過作軸于,若,且,求點的坐標.20.某公園的門票價格如下表所示:某中學七年級(1)、(2)兩個班計劃去游覽該公園,其中(I)班的人數(shù)較少,不足50人;(2)班人數(shù)略多,有50多人.如果兩個班都以班為單位分別購票,則一共應(yīng)付1172元,如果兩個班聯(lián)合起來,作為一個團體購票,則需付1078元.(1)列方程求出兩個班各有多少學生;(2)如果兩個班聯(lián)合起來買票,是否可以買單價為9元的票?你有什么省錢的方法來幫他們買票呢?請給出最省錢的方案.21.如圖,,是的平分線,和的度數(shù)滿足方程組,(1)求和的度數(shù);(2)求證:.(3)求的度數(shù).22.閱讀下列文字,請仔細體會其中的數(shù)學思想.(1)解方程組,我們利用加減消元法,很快可以求得此方程組的解為;(2)如何解方程組呢?我們可以把m+5,n+3看成一個整體,設(shè)m+5=x,n+3=y(tǒng),很快可以求出原方程組的解為;(3)由此請你解決下列問題:若關(guān)于m,n的方程組與有相同的解,求a、b的值.23.一個四位正整數(shù),若其千位上與百位上的數(shù)字之和等于十位上與個位上的數(shù)字之和,都等于k,那么稱這個四位正整數(shù)為“k類誠勤數(shù)”,例如:2534,因為,所以2534是“7類誠勤數(shù)”.(1)請判斷7441和5436是否為“誠勤數(shù)”并說明理由;(2)若一個四位正整數(shù)A為“5類誠勤數(shù)”且能被13整除,請求出的所有可能取值.24.用如圖1的長方形和正方形鐵片(長方形的寬與正方形的邊長相等)作側(cè)面和底面、做成如圖2的豎式和橫式的兩種無蓋的長方體容器,(1)現(xiàn)有長方形鐵片2014張,正方形鐵片1176張,如果將兩種鐵片剛好全部用完,那么可加工成豎式和橫式長方體容器各有幾個?(2)現(xiàn)有長方形鐵片a張,正方形鐵片b張,如果加工這兩種容器若干個,恰好將兩種鐵片剛好全部用完.則的值可能是()A.2019B.2020C.2021D.2022(3)給長方體容器加蓋可以加工成鐵盒.先工廠倉庫有35張鐵皮可以裁剪成長方形和正方形鐵片,用來加工鐵盒,已知1張鐵皮可裁剪出3張長方形鐵片或4張正方形鐵片,也可以裁剪出1張長方形鐵片和2張正方形鐵片.請問怎樣充分利用這35張鐵皮,最多可以加工成多少個鐵盒?25.閱讀材料:關(guān)于x,y的二元一次方程ax+by=c有一組整數(shù)解,則方程ax+by=c的全部整數(shù)解可表示為(t為整數(shù)).問題:求方程7x+19y=213的所有正整數(shù)解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因為解得.因為t為整數(shù),所以t=0或-1.所以該方程的正整數(shù)解為和.(1)方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則=;(2)請你參考小明的解題方法,求方程2x+3y=24的全部正整數(shù)解;(3)方程19x+8y=1908的正整數(shù)解有多少組?請直接寫出答案.26.如圖,在平面直角坐標系中,軸,軸,且,動點從點出發(fā),以每秒的速度,沿路線向點運動;動點從點出發(fā),以每秒的速度,沿路線向點運動.若兩點同時出發(fā),其中一點到達終點時,運動停止.(Ⅰ)直接寫出三個點的坐標;(Ⅱ)設(shè)兩點運動的時間為秒,用含的式子表示運動過程中三角形的面積;(Ⅲ)當三角形的面積的范圍小于16時,求運動的時間的范圍.27.已知關(guān)于x、y的二元一次方程(1)若方程組的解x、y滿足,求a的取值范圍;(2)求代數(shù)式的值.28.對于平面直角坐標系xOy中的任意兩點M(x1,y1),N(x2,y2),給出如下定義:將|x1﹣x2|稱為點M,N之間的“橫長”,|y1﹣y2|稱為點M,N之間的縱長”,點M與點N的“橫長”與“縱長”之和稱為“折線距離”,記作d(M,N)=|x1﹣x2|+|y1﹣y2|“.例如:若點M(﹣1,1),點N(2,﹣2),則點M與點N的“折線距離”為:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.根據(jù)以上定義,解決下列問題:已知點P(3,2).(1)若點A(a,2),且d(P,A)=5,求a的值;(2)已知點B(b,b),且d(P,B)<3,直接寫出b的取值范圍;(3)若第一象限內(nèi)的點T與點P的“橫長”與“縱長”相等,且d(P,T)>5,簡要分析點T的橫坐標t的取值范圍.29.閱讀下列材料:我們知道的幾何意義是在數(shù)軸上數(shù)對應(yīng)的點與原點的距離,即,也就是說,表示在數(shù)軸上數(shù)與數(shù)對應(yīng)的點之間的距離;例1.解方程,因為在數(shù)軸上到原點的距離為的點對應(yīng)的數(shù)為,所以方程的解為.例2.解不等式,在數(shù)軸上找出的解(如圖),因為在數(shù)軸上到對應(yīng)的點的距離等于的點對應(yīng)的數(shù)為或,所以方程的解為或,因此不等式的解集為或.參考閱讀材料,解答下列問題:(1)方程的解為;(2)解不等式:;(3)解不等式:.30.如圖1,在平面直角坐標系中,點A為x軸負半軸上一點,點B為x軸正半軸上一點,,,其中a、b滿足關(guān)系式:.______,______,的面積為______;如圖2,石于點C,點P是線段OC上一點,連接BP,延長BP交AC于點當時,求證:BP平分;提示:三角形三個內(nèi)角和等于如圖3,若,點E是點A與點B之間上一點連接CE,且CB平分問與有什么數(shù)量關(guān)系?請寫出它們之間的數(shù)量關(guān)系并請說明理由.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1),;(2);(3)【解析】【分析】(1)利用非負數(shù)的性質(zhì)即可解決問題;(2)利用三角形面積求法,由列方程組,求出點C坐標,進而由△ACD面積求出D點坐標.(3)由平行線間距離相等得到,繼而求出E點坐標,同理求出F點坐標,再由GE=12求出G點坐標,根據(jù)求出PG的長即可求P點坐標.【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點睛】本題考查的是二元一次方程的應(yīng)用、三角形的面積公式、坐標與圖形的性質(zhì)、平移的性質(zhì),靈活運用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過O點作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問題的關(guān)鍵.3.(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)平行線的性質(zhì)及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內(nèi)部,平分;(3)如圖,不發(fā)生變化,,過,分別作,,則有,,,,,,,,,,,,不變.【點睛】此題考查了平行線的性質(zhì),熟記平行線的性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.4.(1)∠APC=α+β,理由見解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)過點P作PE∥AB,根據(jù)平行線的判定與性質(zhì)即可求解;(2)分點P在線段MN或NM的延長線上運動兩種情況,根據(jù)平行線的判定與性質(zhì)及角的和差即可求解;(3)過點P,Q分別作PE∥AB,QF∥AB,根據(jù)平行線的判定與性質(zhì)及角的和差即可求解.【詳解】解:(1)如圖2,過點P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如圖,在(1)的條件下,如果點P在線段MN的延長線上運動時,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如圖,在(1)的條件下,如果點P在線段NM的延長線上運動時,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如圖3,過點P,Q分別作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=∠BAP,∠DCQ=∠PCD,∴∠BAQ+∠DCQ=(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【點睛】此題考查了平行線的判定與性質(zhì),添加輔助線將兩條平行線相關(guān)的角聯(lián)系到一起是解題的關(guān)鍵.5.(1)見解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先證明∠1=∠3,易證得AB//CD;(2)如圖2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行線的性質(zhì)即可證明;(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,想辦法構(gòu)建方程即可解決問題;【詳解】(1)如圖1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)結(jié)論:如圖2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可證:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如圖3中,設(shè)∠QPF=y(tǒng),∠PHQ=x.∠EPQ=z,則∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF平分∠BPE,∴∠EPQ+∠FPQ=∠FPH+∠BPH,∴∠FPH=y(tǒng)+z﹣x,∵PQ平分∠EPH,∴Z=y(tǒng)+y+z﹣x,∴x=2y,∴12y=180°,∴y=15°,∴x=30°,∴∠PHQ=30°.【點睛】本題考查了平行線的判定與性質(zhì),角平分線的定義等知識.(2)中能正確作出輔助線是解題的關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題的關(guān)鍵.6.(1)AB//CD,證明見解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)(n-1)?180°【分析】(1)過點E作EF//AB,利用平行線的性質(zhì)則可得出∠B=∠BEF,再由已知及平行線的判定即可得出AB∥CD;(2)如圖,過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,根據(jù)探究(1)的證明過程及方法,可推出∠E+∠G=∠B+∠F+∠D,則可由此得出規(guī)律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;(3)如圖,過點M作EF∥AB,過點N作GH∥AB,則可由平行線的性質(zhì)得出∠1+∠2+∠MNG=180°×2,依此即可得出此題結(jié)論.【詳解】解:(1)過點E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(內(nèi)錯角相等,兩直線平行).∴AB//CD.(2)過點E作EM∥AB,過點F作FN∥AB,過點G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:開口朝左的所有角度之和與開口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.故答案為:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.(3)如圖,過點M作EF∥AB,過點N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG=180°×2,依次類推:∠1+∠2+…+∠n-1+∠n=(n-1)?180°.故答案為:(n-1)?180°.【點睛】本題考查了平行線的性質(zhì)與判定,屬于基礎(chǔ)題,關(guān)鍵是過E點作AB(或CD)的平行線,把復雜的圖形化歸為基本圖形.7.(1)5,3;(2)有正格數(shù)對,正格數(shù)對為【分析】(1)根據(jù)定義,直接代入求解即可;(2)將代入求出b的值,再將代入,表示出kx,再根據(jù)題干分析即可.【詳解】解:(1)∵∴5,3故答案為:5,3;(2)有正格數(shù)對.將代入,得出,,解得,,∴,則∴∵,為正整數(shù)且為整數(shù)∴,,,∴正格數(shù)對為:.【點睛】本題考查的知識點是實數(shù)的運算,理解新定義是解此題的關(guān)鍵.8.(1);(2).【解析】【分析】設(shè),兩邊乘以2后得到關(guān)系式,與已知等式相減,變形即可求出所求式子的值;同理即可得到所求式子的值.【詳解】解:設(shè),將等式兩邊同時乘2得:,將下式減去上式得:,即,則;設(shè),兩邊同時乘3得:,得:,即,則.【點睛】本題考查了規(guī)律型:數(shù)字的變化類,有理數(shù)的混合運算,解題的關(guān)鍵是明確題意,運用題目中的解題方法,運用類比的數(shù)學思想解答問題.9.(1);(2);(3).【分析】仿照閱讀材料中的方法求出所求即可.【詳解】解:(1)根據(jù)得:(2)設(shè),則,∴,∴即:(3)設(shè),則,∴,∴即:同理可求?∵【點睛】此題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解本題的關(guān)鍵.10.(1)2,3(2)①②(3)【分析】(1)根據(jù)新定義的運算規(guī)則進行計算即可;(2)①根據(jù)新定義的運算規(guī)則即可求出實數(shù)的取值范圍;②根據(jù)新定義的運算規(guī)則和為整數(shù),即可求出所有非負實數(shù)的值;(3)先解方程求得,再根據(jù)方程的解是正整數(shù)解,即可求出非負實數(shù)的取值范圍.【詳解】(1)2;3;(2)①∵∴解得;②∵∴解得∵為整數(shù)∴故所有非負實數(shù)的值有;(3)∵方程的解為正整數(shù)∴或2①當時,是方程的增根,舍去②當時,.【點睛】本題考查了新定義下的運算問題,掌握新定義下的運算規(guī)則是解題的關(guān)鍵.11.(1)(437,307,177)是“蹦蹦數(shù)組”,(601,473,346)不是“蹦蹦數(shù)組”;(2)存在,數(shù)組為(532,395,258);(3)這個三位數(shù)是147.【分析】(1)由“蹦蹦數(shù)組”的定義進行驗證即可;(2)設(shè)s為,t為,則,先后求得n、s的值,根據(jù)“蹦蹦數(shù)組”的定義即可求解;(3)設(shè)這個數(shù)為,則,由和都是0到9的正整數(shù),列舉法即可得出這個三位數(shù).【詳解】解:(1)數(shù)組(437,307,177)中,437-307=130,307-177=130,∴437-307=307-177,故(437,307,177)是“蹦蹦數(shù)組”;數(shù)組(601,473,346)中,601-473=128,473-346=127,∴601-473473-346,故(601,473,346)不是“蹦蹦數(shù)組”;(2)設(shè)s為,t為,則,∵m、n為整數(shù),∴,則t為258,∴s為532,而,則b為532-137=395,驗算:532-395=395-258=137,故數(shù)組為(532,395,258);(3)根據(jù)題意,設(shè)這個數(shù)為,則,∴,而和都是0到9的正整數(shù),討論:p12345q13579111123135147159而是7的倍數(shù)的三位數(shù)只有147,且1-4=4-7=-3,數(shù)組(1,4,7)為“蹦蹦數(shù)組”,故這個三位數(shù)是147.【點睛】本題是一道新定義題目,解決的關(guān)鍵是能夠根據(jù)定義,通過列舉法找到合適的數(shù),進而求解.12.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根據(jù)布谷數(shù)的定義把2和32化為底數(shù)為2的冪即可得出答案;(2)①根據(jù)布谷數(shù)的運算性質(zhì),g(14)=g(2×7)=g(2)+g(7),,再代入數(shù)值可得解;②根據(jù)布谷數(shù)的運算性質(zhì),先將兩式化為,,再代入求解.【詳解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案為1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案為3.807,0.807;②∵.∴;.【點睛】本題考查有理數(shù)的乘方運算,新定義;能夠?qū)⑿露x的運算轉(zhuǎn)化為有理數(shù)的乘方運算是解題的關(guān)鍵.13.(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24.【分析】(1)根據(jù)二次根式和偶次冪的非負性得出a,b解答即可;(2)①根據(jù)三角形的面積公式得出點C的坐標,根據(jù)平行線的性質(zhì)解答即可;②延長CA交直線l于點H(a,10),過點H作HM⊥x軸于點M,根據(jù)三角形面積公式解答即可;(3)平移GH到DM,連接HM,根據(jù)三角形面積公式解答即可.【詳解】解:(1)∵,且,(b﹣4)2≥0,∴a﹣5=0,b﹣4=0,解得:a=5,b=4,∴A(0,5),B(4,0);(2)①連接BE,如圖1,∵,∴BC=6,∴C(﹣2,0),∵AB∥CE,∴S△ABC=S△ABE,∴,∴AE=,∴OE=,∴E(0,﹣);②∵F(m,10),∴點F在過點G(0,10)且平行于x軸的直線l上,延長CA交直線l于點H(a,10),過點H作HM⊥x軸于點M,則M(a,0),如圖2,∵S△HCM=S△ACO+S梯形AOMH,∴,解得:a=2,∴H(2,10),∵S△AFC=S△CFH﹣S△AFH,∴,∴FH=4,∵H(2,10),∴F(﹣2,10)或(6,10),∴m=﹣2或6;(3)平移GH到DM,連接HM,則GD∥HM,GD=HM,如圖3,四邊形BDHG的面積=△BHM的面積,當BH⊥HM時,△BHM的面積最大,其最大值=.【點睛】本題主要考查圖形與坐標及平移的性質(zhì),熟練掌握圖形與坐標及平移的性質(zhì)是解題的關(guān)鍵.14.(1)42°;(2)見解析;(3)∠1=∠2,理由見解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過點B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進而得出結(jié)論;(3)過點C
作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過點B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過點C
作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.15.(1)a=-2,b=2;(2)P(0,-4)或(0,4);(3)①∠CAB+∠ODB=90°;②∠AED=45°.【分析】(1)根據(jù)非負數(shù)的性質(zhì)即可求得a、b的值;(2)先求得S△ABC=4,設(shè)P(0,t),根據(jù)S△OPC=OP×2=××2=4求得t值,即可求得點P的坐標;(3)①已知BD∥AC,根據(jù)兩直線平行,內(nèi)錯角相等可得∠CAB=∠OBD,由∠OBD+∠ODB=90°,即可得∠CAB+∠ODB=90°;②根據(jù)角平分線的定義及①中的結(jié)論,可求得∠3+∠4=45°;過點E作EF∥AC,即可得EF∥BD∥AC,根據(jù)平行線的性質(zhì)可得∠3=∠1,∠2=∠4,由此求得∠AED=∠1+∠2=∠4+∠3=45°.【詳解】(1)∵,∴a+2=0,b-2=0,∴a=-2,b=2;(2)∵a=-2,b=2,∴A(-2,0),C(2,2),∴S△ABC=AB?BC=×4×2=4;設(shè)P(0,t),∴S△OPC=OP×2=××2==4;∴t=4或t=-4,∴P(0,-4)或(0,4).(3)①∵BD∥AC,∴∠CAB=∠OBD,∵∠OBD+∠ODB=90°,∴∠CAB+∠ODB=90°;②∵AE,DE分別平分∠CAB,∠ODB,∴∠3=,∠4=,∵∠CAB+∠ODB=90°,∴∠3+∠4=+=45°,過點E作EF∥AC,∵BD∥AC,∴EF∥BD∥AC,∴∠3=∠1,∠2=∠4,∴∠AED=∠1+∠2=∠4+∠3=45°.【點睛】本題考查了坐標與圖形性質(zhì),熟知非負數(shù)的性質(zhì)、三角形的面積公式及平行線的性質(zhì)是解決問題的關(guān)鍵.16.(1)在乙家批發(fā)更優(yōu)惠;(2)當x=200時他選擇任何一家批發(fā)所花費用一樣多;當100<x<200時,師傅應(yīng)選擇甲家批發(fā)商所花費用更少;當x>200時,師傅應(yīng)選擇乙家批發(fā)商所花費用更少.【分析】(1)分別求出在甲、乙兩家批發(fā)240千克蘋果所需費用,比較后即可得出結(jié)論;(2)分兩種情況:①若100<x≤150時,②若x>150時,分別用含x的代數(shù)式表示出在甲、乙兩家批發(fā)x千克蘋果所需費用,再比較大小,列出不等式,求出x的范圍,即可得到結(jié)論.【詳解】(1)在甲家批發(fā)所需費用為:240×8×85%=1632(元),在乙家批發(fā)所需費用為:50×8×95%+(150?50)×8×85%+(240?150)×8×75%=1600(元),∵1632>1600,∴在乙家批發(fā)更優(yōu)惠;(2)①若100<x≤150時,在甲家批發(fā)所需費用為:8×85%x=6.8x,在乙家批發(fā)所需費用為:50×8×95%+(x?50)×8×85%=6.8x+40,∵6.8x<6.8x+40,∴師傅應(yīng)選擇甲家批發(fā)商所花費用更少;②若x>150時,在甲家批發(fā)所需費用為:8×85%x=6.8x,在乙家批發(fā)所需費用為:50×8×95%+(150?50)×8×85%+(x?150)×8×75%=6x+160,當6.8x=6x+160時,即x=200時,師傅選擇兩家批發(fā)商所花費用一樣多,當6.8x>6x+160時,即x>200時,師傅應(yīng)選擇乙家批發(fā)商所花費用更少,當6.8x<6x+160時,即150<x<200時,師傅應(yīng)選擇甲家批發(fā)商所花費用更少.綜上所得:當x=200時他選擇任何一家批發(fā)所花費用一樣多;當100<x<200時,師傅應(yīng)選擇甲家批發(fā)商所花費用更少;當x>200時,師傅應(yīng)選擇乙家批發(fā)商所花費用更少.【點睛】本題主要考查代數(shù)式,一元一次方程,一元一次不等式的綜合實際應(yīng)用,理清數(shù)量關(guān)系,列出代數(shù)式,不等式或方程,是解題的關(guān)鍵.17.(1)4;(2)①或;②1.【分析】(1)依照題意,分別求出和,比較大小,得出答案,(2)點在軸上所以橫坐標為0,,所以點和點的縱坐標差的絕對值應(yīng)為2,可得點坐標,(3)已知點和點的橫坐標差的絕對值恒等于1,縱坐標差的絕對是個動點問題,取值范圍和1比較,可得出最小值為1.【詳解】解:(1),,,,點與點的“非常距離”為4.故答案為:4.(2)①點在軸上所以橫坐標為0,點和點的縱坐標差的絕對值應(yīng)為2,設(shè)點的縱坐標為,,解得或,點的坐標為或,故點的坐標為或;②最小值為1,理由為已知點和點的橫坐標差的絕對值恒等于1,,設(shè)點的縱坐標為,當時,,可得點與點的“非常距離”為1,當或時,,可得點與點的“非常距離”為.,點與點的“非常距離”的最小值為1,故點與點的“非常距離”的最小值為1.【點睛】本題考查了直角坐標系坐標結(jié)合絕對值的應(yīng)用,是新定義問題,難點在于第三問的動點位置取值范圍討論,需要學生根據(jù)題意正確討論.18.(1),,;(2)存在,或;(3)存在,或;(4)存在,的縱坐標總是4或.或者:點在平行于軸且與軸的距離等于4的兩條直線上;或者:點在直線或直線上【分析】(1)根據(jù)點的平移規(guī)律,即可得到對應(yīng)點坐標;(2)由,可以得到,即可得到P點坐標;(3)由,可以得到,結(jié)合點C坐標,就可以求得點Q坐標;(4)由,可以AB邊上的高的長度,從而得到點的坐標規(guī)律.【詳解】(1)∵點,點∴向上平移3個單位,再向右平移1個單位之后對應(yīng)點坐標為,點∴∴(2)存在,理由如下:∵即:=12∴∴或(3)存在,理由如下:∵即:∵∴∵∴或(4)存在:理由如下:∵∴設(shè)中,AB邊上的高為h則:∴∴點在直線或直線上【點睛】本題考查直角坐標系中點的坐標平移規(guī)律,由點到坐標軸的距離確定點坐標等知識點,根據(jù)相關(guān)內(nèi)容解題是關(guān)鍵.19.(1),;(2);(3)【解析】【分析】(1)利用非負數(shù)的性質(zhì)即可解決問題;(2)利用三角形面積求法,由列方程組,求出點C坐標,進而由△ACD面積求出D點坐標.(3)由平行線間距離相等得到,繼而求出E點坐標,同理求出F點坐標,再由GE=12求出G點坐標,根據(jù)求出PG的長即可求P點坐標.【詳解】解:(1),∴,,,,,,,(2)由∴,,,如圖1,連,作軸,軸,,即,,,而,,,,(3)如圖2:∵EF∥AB,∴,∴,即,,,,,,,,,,,,,,【點睛】本題考查的是二元一次方程的應(yīng)用、三角形的面積公式、坐標與圖形的性質(zhì)、平移的性質(zhì),靈活運用分情況討論思想、掌握平移規(guī)律是解題的關(guān)鍵.20.(1)七(1)班有47人,七(2)班有51人;(2)如果兩個班聯(lián)合起來買票,不可以買單價為9元的票,省錢的方法,可以買101張票,多余的作廢即可【解析】【分析】(1)由兩個班聯(lián)合起來,作為一個團體購票,則需付1078元可知:可得票價不是9元,所以兩個班的總?cè)藬?shù)沒有超過100人,設(shè)七(1)班有x人,七(2)班有y人,可列方程組,解方程組即可得答案;(2)如果兩班聯(lián)合起來作為一個團體購票,則每張票11元,省錢的方法,可以買101張票,多余的作廢即可。【詳解】解:(1)∵兩個班聯(lián)合起來,作為一個團體購票,則需付1078元有∵可得票價不是9元,所以兩個班的總?cè)藬?shù)沒有超過100人,∴設(shè)七(1)班有x人,七(2)班有y人,依題意得:∴七(1)班有47人,七(2)班有51人(2)因為47+51=98<100∴如果兩個班聯(lián)合起來買票,不可以買單價為9元的票∴省錢的方法,可以買101張票,多余的作廢即可。可?。骸军c睛】熟練掌握二元一次方程組的實際問題是解題的關(guān)鍵。21.(1)和的度數(shù)分別為和;(2)見解析;(3)【分析】根據(jù),解二元一次方程組,求出和的度數(shù);根據(jù)平行線判定定理,判定;由“是的平分線”:,再根據(jù)平行線判定定理,求出的度數(shù).【詳解】解:(1)①②,得,,代入①得和的度數(shù)分別為和.(2),(3)是的平分線,【點睛】本題運用二元一次方程組給出已知條件,熟練掌握二元一次方程組的解法以及平行線相關(guān)定理是解題的關(guān)鍵.22.(1);(2);(3)a=3,b=2.【分析】(1)利用加減消元法,可以求得;(2)利用換元法,設(shè)m+5=x,n+3=y,則方程組化為(1)中的方程組,可求得x,y的值進一步可求出原方程組的解;(3)把am和bn當成一個整體利用已知條件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,繼而可求出a、b的值.【詳解】解:(1)兩個方程相加得,∴,把代入得,∴方程組的解為:;故答案是:;(2)設(shè)m+5=x,n+3=y(tǒng),則原方程組可化為,由(1)可得:,∴m+5=1,n+3=2,∴m=-4,n=-1,∴,故答案是:;(3)由方程組與有相同的解可得方程組,解得,把bn=4代入方程2m﹣bn=﹣2得2m=2,解得m=1,再把m=1代入3m+n=5得3+n=5,解得n=2,把m=1代入am=3得:a=3,把n=2代入bn=4得:b=2,所以a=3,b=2.【點睛】本題主要考查二元一次方程組的解法,重點是考查整體思想及換元法的應(yīng)用,解題的關(guān)鍵是理解好整體思想.23.(1)7441不是“誠勤數(shù)”;5463是“誠勤數(shù)”;(2)滿足條件的A為:2314或5005或3250.【分析】(1)直接利用定義進行驗證,即可得到答案;(2)由題意,設(shè)這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),然后根據(jù)13的倍數(shù)關(guān)系,以及“5類誠勤數(shù)”的定義,利用分類討論的進行分析,即可得到答案.【詳解】解:(1)在7441中,7+4=11,4+1=5,∵115,∴7441不是“誠勤數(shù)”;在5436中,∵5+4=6+3=9,∴5463是“誠勤數(shù)”;(2)根據(jù)題意,設(shè)這個四位數(shù)的十位數(shù)是a,千位數(shù)是b,則個位數(shù)為(5a),百位數(shù)為(5b),且,,∴這個四位數(shù)為:,∵,,∴,∵這個四位數(shù)是13的倍數(shù),∴必須是13的倍數(shù);∵,,∴在時,取到最大值60,∴可以為:2、15、28、41、54,∵,則是3的倍數(shù),∴或,∴或;①當時,,∵,且a為非負整數(shù),∴或,∴或,若,則,此時;若,則,此時;②當時,,∵,且a為非負整數(shù),∴是3的倍數(shù),且,∴,∴,則,∴;綜合上述,滿足條件的A為:2314或5005或3250.【點睛】本題考查了二元一次方程,新定義的運算法則,解題的關(guān)鍵是熟練掌握題意,正確列出二元一次方程,結(jié)合新定義,利用分類討論的思想進行解題.24.(1)豎式長方體鐵容器100個,橫式長方體鐵容器538個;(2)B;(3)19個【分析】(1)設(shè)可以加工豎式長方體鐵容器x個,橫式長方體鐵容器y個,根據(jù)加工的兩種長方體鐵容器共用了長方形鐵片2014張、正方形鐵片1176張,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;(2)設(shè)豎式紙盒c個,橫式紙盒d個,由題意列出方程組可求解.(3)設(shè)做長方形鐵片的鐵板為m塊,做正方形鐵片的鐵板為n塊,由鐵板的總數(shù)量及所需長方形鐵片的數(shù)量為正方形鐵皮的2倍,即可得出關(guān)于m,n的二元一次方程組,解之即可得出m,n的值,取其整數(shù)部分再將剩余鐵板按一張鐵板裁出1個長方形鐵片和2個正方形鐵片處理,即可得出結(jié)論.【詳解】解:(1)設(shè)可以加工豎式長方體鐵容器x個,橫式長方體鐵容器y個,依題意,得:,解得:,答:可以加工豎式長方體鐵容器100個,橫式長方體鐵容器538個.(2)設(shè)豎式紙盒c個,橫式紙盒d個,根據(jù)題意得:,∴5c+5d=5(c+d)=a+b,∴a+b是5的倍數(shù),可能是2020,故選B;(3)設(shè)做長方形鐵片的鐵板為m塊,做正方形鐵片的鐵板為n塊,依題意,得:,解得:,∵在這35塊鐵板中,25塊做長方形鐵片可做25×3=75(張),9塊做正方形鐵片可做9×4=36(張),剩下1塊可裁出1張長方形鐵片和2張正方形鐵片,∴共做長方形鐵片75+1=76(張),正方形鐵片36+2=38(張),∴可做鐵盒76÷4=19(個).答:最多可以加工成19個鐵盒.【點睛】本題考查了二元一次方程組的應(yīng)用以及二元一次方程的應(yīng)用,解題的關(guān)鍵是:找準等量關(guān)系,正確列出二元一次方程(組).25.(1)-1;(2)t=-2,-1,0,1;(3)13組【分析】(1)把x=2代入方程3x-5y=11得,求得y的值,即可求得θ的值;(2)參考小明的解題方法求解即可;(3)參考小明的解題方法求解后,即可得到結(jié)論.【詳解】解:(1)把x=2代入方程3x-5y=11得,6-6y=11,解得y=-1,∵方程3x-5y=11的全部整數(shù)解表示為:(t為整數(shù)),則θ=-1,故答案為-1;(2)方程2x+3y=24一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).因為,解得-3<t<2.因為t為整數(shù),所以t=-2,-1,0,1.(3)方程19x+8y=1908一組整數(shù)解為,則全部整數(shù)解可表示為(t為整數(shù)).∵,解得<t<12.5.因為t為整數(shù),所以t=0,1,2,3,4,5,67,8,9,10,11,12,∴方程19x+8y=1908的正整數(shù)解有13組.【點睛】本題考查了二元一次方程的解,一元一次不等式的整數(shù)解,理解題意、掌握解題方法是本題的關(guān)鍵.26.(Ⅰ);(Ⅱ)當時,三角形的面積為;當時,三角形的面積為;(Ⅲ)或.【分析】(Ⅰ)先求出的長,再根據(jù)的長即可得;(Ⅱ)先分別求出點運動到點所需時間、點運動到點所需時間,從而可得,再分和兩種情況,分別利用三角形的面積公式、梯形的面積公式即可得;(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,分和兩種情況,分別建立不等式,解不等式即可得.【詳解】解:(Ⅰ)軸,,,軸,,;(Ⅱ)∵點運動的路徑長為,所用時間為7秒;點運動的路徑長為,所用時間為秒,∴根據(jù)其中一點到達終點時運動停止可知,運動時間的取值范圍為,點運動到點所用時間為4秒,點運動到點所用時間為,因此,分以下兩種情況:①如圖,當時,,則三角形的面積為;②當時,如圖,過點作,交延長線于點,,,則三角形的面積為,,,綜上,當時,三角形的面積為;當時,三角形的面積為;(Ⅲ)①當時,則,解得,則此時的取值范圍為;②當時,則,解得,則此時的取值范圍為,綜上,當三角形的面積的范圍小于16時,或.【點睛】本題考查了坐標與圖形、三角形的面積公式、一元一次不等式的應(yīng)用等知識點,較難的是題(Ⅱ),正確分兩種情況討論是解題關(guān)鍵.27.(1);(2)-17【分析】(1)解方程組求出x、y的值,根據(jù)列不等式組求出答案;(2)將兩個方程相加,求得6x+3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 13-14-Dihydro-15-keto-tetranor-prostaglandin-F1β-生命科學試劑-MCE-3578
- 2025年度智能家居安防裝飾家居裝修合同
- 二零二五年度同居關(guān)系解除并處理共同財產(chǎn)合同
- 2025年度鋼琴制作工藝技術(shù)研究與應(yīng)用合同
- 2025年度海鮮池養(yǎng)殖產(chǎn)業(yè)鏈整合承包協(xié)議
- 教育創(chuàng)新在展館空間設(shè)計中的體現(xiàn)
- 解讀中藥藥理優(yōu)化日常養(yǎng)生
- 個人商業(yè)貸款保證擔保合同
- 中央空調(diào)維護合同范本
- 個人經(jīng)營性貸款借款合同樣本
- 植物芳香油的提取 植物有效成分的提取教學課件
- 肖像繪畫市場發(fā)展現(xiàn)狀調(diào)查及供需格局分析預測報告
- 名著閱讀:簡答、閱讀題(解析版)-2025年中考語文復習專練
- 2021-2022學年遼寧省重點高中協(xié)作校高一上學期期末語文試題
- 同等學力英語申碩考試詞匯(第六版大綱)電子版
- 2024義務(wù)教育道德與法治課程標準(2022版)
- 墓地個人協(xié)議合同模板
- 2024年部編版初中語文各年級教師用書七年級(上冊)
- 企事業(yè)單位公建項目物業(yè)管理全套方案
- 2024年北京市房山區(qū)初三語文一模試卷及答案
- 4P、4C、4R-營銷理論簡析
評論
0/150
提交評論