版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
重慶市主城區(qū)七校2023年高二數(shù)學(xué)第一學(xué)期期末檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知a,b為正數(shù),,則下列不等式一定成立的是()A. B.C. D.2.已知某地區(qū)7%的男性和0.49%的女性患色盲.假如男性、女性各占一半,從中隨機(jī)選一人,則此人恰是色盲的概率是()A.0.01245 B.0.05786C.0.02865 D.0.037453.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機(jī)械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時(shí)間為()A.1h B.C. D.4.橢圓的焦點(diǎn)坐標(biāo)為()A. B.C. D.5.已知,則點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)是()A. B.C. D.6.某公司門前有一排9個(gè)車位的停車場,從左往右數(shù)第三個(gè),第七個(gè)車位分別停著A車和B車,同時(shí)進(jìn)來C,D兩車.在C,D不相鄰的情況下,C和D至少有一輛與A和B車相鄰的概率是()A. B.C. D.7.若正三棱柱的所有棱長都相等,D是的中點(diǎn),則直線AD與平面所成角的正弦值為A. B.C. D.8.已知數(shù)列滿足,且,則的值為()A.3 B.C. D.9.和的等差中項(xiàng)與等比中項(xiàng)分別為()A., B.2,C., D.1,10.若關(guān)于x的方程有解,則實(shí)數(shù)的取值范圍為()A. B.C. D.11.在正三棱錐中,,且,M,N分別為BC,AD的中點(diǎn),則直線AM和CN夾角的余弦值為()A. B.C. D.12.已知F1、F2是雙曲線E:(a>0,b>0)的左、右焦點(diǎn),過F1的直線與雙曲線左、右兩支分別交于點(diǎn)P、Q.若,M為PQ的中點(diǎn),且,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(建三江)函數(shù)在處取得極小值,則=___14.若函數(shù)在x=1處的切線與直線y=kx平行,則實(shí)數(shù)k=___________.15.設(shè),,,則動(dòng)點(diǎn)P的軌跡方程為______,P到坐標(biāo)原點(diǎn)的距離的最小值為______16.九連環(huán)是中國的一種古老智力游對(duì),它用九個(gè)圓環(huán)相連成串,環(huán)環(huán)相扣,以解開為勝,趣味無窮.中國的末代皇帝溥儀(1906-1967)也曾有一個(gè)精美的由九個(gè)翡翠繯相連的銀制的九連環(huán)(如圖).現(xiàn)假設(shè)有個(gè)圓環(huán),用表示按照某種規(guī)則解下個(gè)圓環(huán)所需的銀和翠玉制九連環(huán)最少移動(dòng)次數(shù),且數(shù)列滿足,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,,,請(qǐng)?jiān)購臈l件①、條件②這兩個(gè)條件中選擇一個(gè)作為已知,然后解答下列問題.(1)求角的大??;(2)求的面積.條件①:;條件②:.18.(12分)設(shè)P是拋物線上一個(gè)動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn).(1)若點(diǎn)P到直線距離為,求的最小值;(2)若,求的最小值.19.(12分)用長度為80米的護(hù)欄圍出一個(gè)一面靠墻的矩形運(yùn)動(dòng)場地,如圖所示,運(yùn)動(dòng)場地的一條邊記為(單位:米),面積記為(單位:平方米)(1)求關(guān)于的函數(shù)關(guān)系;(2)求的最大值20.(12分)已知點(diǎn)和直線.(1)求以為圓心,且與直線相切的圓的方程;(2)過直線上一點(diǎn)作圓的切線,其中為切點(diǎn),求四邊形PAMB的面積的最小值.21.(12分)如圖長方體中,,,點(diǎn)為的中點(diǎn).(1)求證:平面;(2)求證:平面;(3)求二面角的余弦值.22.(10分)如圖,四棱錐中,底面為矩形,底面,,點(diǎn)是棱的中點(diǎn)(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】構(gòu)造新函數(shù),以函數(shù)單調(diào)性把不等式轉(zhuǎn)化為整式不等式即可解決.【詳解】不等式可化為:令,則則函數(shù)為單調(diào)增函數(shù).由可得故選:A2、D【解析】設(shè)出事件,利用全概率公式進(jìn)行求解.【詳解】用事件A,B分別表示隨機(jī)選1人為男性或女性,用事件C表示此人恰是色盲,則,且A,B互斥,故故選:D3、A【解析】設(shè)小時(shí)后,相遇地點(diǎn)為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點(diǎn),建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時(shí)間為,相遇地點(diǎn)為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因?yàn)?0min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達(dá).在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時(shí)間為1h.故選:A.點(diǎn)睛】4、B【解析】根據(jù)方程可得,且焦點(diǎn)軸上,然后可得答案.【詳解】由橢圓的方程可得,且焦點(diǎn)在軸上,所以,即,故焦點(diǎn)坐標(biāo)為故選:B5、C【解析】根據(jù)對(duì)稱性求得坐標(biāo)即可.【詳解】點(diǎn)關(guān)于平面的對(duì)稱點(diǎn)的坐標(biāo)是,故選:C6、B【解析】先求出基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,由此能求出和至少有一輛與和車相鄰的概率【詳解】解:某公司門前有一排9個(gè)車位的停車場,從左往右數(shù)第三個(gè),第七個(gè)車位分別停著車和車,同時(shí)進(jìn)來,兩車,在,不相鄰的條件下,基本事件總數(shù),和至少有一輛與和車相鄰的對(duì)立事件是和都不與和車相鄰,和至少有一輛與和車相鄰的概率:故選:B7、A【解析】建立空間直角坐標(biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后求出直線的方向向量和平面的法向量,借助向量的運(yùn)算求出線面角的正弦值【詳解】取AC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系設(shè)三棱柱的棱長為2,則,∴設(shè)為平面的一個(gè)法向量,由故令,得設(shè)直線AD與平面所成角為,則,所以直線AD與平面所成角的正弦值為故選A【點(diǎn)睛】空間向量的引入為解決立體幾何問題提供了較好的方法,解題時(shí)首先要建立適當(dāng)?shù)淖鴺?biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后借助向量的運(yùn)算,將空間圖形的位置關(guān)系或數(shù)量關(guān)系轉(zhuǎn)化為向量的運(yùn)算處理.在解決空間角的問題時(shí),首先求出向量夾角的余弦值,然后再轉(zhuǎn)化為所求的空間角.解題時(shí)要注意向量的夾角和空間角之間的聯(lián)系和區(qū)別,避免出現(xiàn)錯(cuò)誤8、B【解析】根據(jù)題意,依次求出,觀察規(guī)律,進(jìn)而求出數(shù)列的周期,然后通過周期性求得答案.【詳解】因?yàn)閿?shù)列滿足,,所以,所以,,,可知數(shù)列具有周期性,周期為3,,所以.故選:B9、C【解析】根據(jù)等差中項(xiàng)和等比中項(xiàng)的概念分別求值即可.【詳解】和的等差中項(xiàng)為,和的等比中項(xiàng)為.故選:C.10、C【解析】將對(duì)數(shù)方程化為指數(shù)方程,用x表示出a,利用基本不等式即可求a的范圍【詳解】,,當(dāng)且僅當(dāng)時(shí)取等號(hào),故故選:C11、B【解析】由題意可得兩兩垂直,所以以為原點(diǎn),所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解【詳解】因?yàn)椋詢蓛纱怪保砸詾樵c(diǎn),所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因?yàn)?,所?因?yàn)镸,N分別為BC,AD的中點(diǎn),所以,所以,設(shè)直線AM和CN所成的角為,則,所以直線AM和CN夾角的余弦值為,故選:B12、D【解析】由題干條件得到,設(shè)出,利用雙曲線定義表達(dá)出其他邊長,得到方程,求出,從而得到,,利用勾股定理求出的關(guān)系,求出離心率.【詳解】因?yàn)镸為PQ的中點(diǎn),且,所以△為等腰三角形,即,因?yàn)?,設(shè),則,由雙曲線定義可知:,所以,則,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由,令,解得或,且時(shí),;時(shí),;時(shí),,所以當(dāng)時(shí),函數(shù)取得極小值考點(diǎn):導(dǎo)數(shù)在函數(shù)中的應(yīng)用;極值的條件14、2【解析】由題可求函數(shù)的導(dǎo)數(shù),再利用導(dǎo)數(shù)的幾何意義即求.【詳解】∵,∴,,又函數(shù)在x=1處的切線與直線y=kx平行,∴.故答案為:2.15、①.②.l【解析】根據(jù)雙曲線的定義得到動(dòng)點(diǎn)的軌跡方程,從而求出到坐標(biāo)原點(diǎn)的距離的最小值;【詳解】解:因?yàn)椋詣?dòng)點(diǎn)P的軌跡為以A,B為焦點(diǎn),實(shí)軸長為2的雙曲線的下支.因?yàn)?,,所以,,,所以?dòng)點(diǎn)P的軌跡方程為故P到坐標(biāo)原點(diǎn)的距離的最小值為故答案為:;;16、684【解析】利用累加法可求得的值.【詳解】當(dāng)且時(shí),,所以,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)條件選擇見解析,(2)【解析】(1)選①,利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;選②,利用余弦定理可求出的值,并利用余弦定理求出的值,結(jié)合角的取值范圍,即可求得角的值;(2)利用三角形的面積公式可求得的面積.【小問1詳解】解:選①,,由余弦定理可得,,所以,.選②,,整理可得,,解得,由余弦定理可得,,所以,.【小問2詳解】解:由三角形的面積公式可得.18、(1);(2)4.【解析】(1)利用拋物線的定義可知,將問題問題轉(zhuǎn)化為求的最小值,即求.(2)判斷點(diǎn)B在拋物線的內(nèi)部,過B作垂直準(zhǔn)線于點(diǎn)Q,交拋物線于點(diǎn),利用拋物線的定義求解即可.【詳解】解析(1)依題意,拋物線的焦點(diǎn)為,準(zhǔn)線方程為.由已知及拋物線的定義,可知,于是問題轉(zhuǎn)化為求的最小值.由平面幾何知識(shí)知,當(dāng)F,P,A三點(diǎn)共線時(shí),取得最小值,最小值為,即的最小值為.(2)把點(diǎn)B的橫坐標(biāo)代入中,得,因?yàn)?,所以點(diǎn)B在拋物線的內(nèi)部.過B作垂直準(zhǔn)線于點(diǎn)Q,交拋物線于點(diǎn)(如圖所示).由拋物線的定義,可知,則,所以的最小值為4.【點(diǎn)睛】本題考查了拋物線的定義,理解定義是解題的關(guān)鍵,屬于基礎(chǔ)題.19、(1)(2)平方米【解析】(1)由題意得矩形場地的另一邊長為80-2x米,通過矩形面積得出關(guān)于的函數(shù)表達(dá)式;(2)利用二次函數(shù)的性質(zhì)求出的最大值即可【小問1詳解】解:由題意得矩形場地的另一邊長為80-2x米,又,得,所以【小問2詳解】解:由(1)得,當(dāng)且僅當(dāng)時(shí),函數(shù)取得最大值平方米20、(1)(2)【解析】(1)利用到直線的距離求得半徑,由此求得圓的方程.(2)結(jié)合到直線的距離來求得四邊形面積的最小值.【小問1詳解】圓的半徑,圓的方程為.【小問2詳解】由四邊形的面積知,當(dāng)時(shí),面積最小.此時(shí)...21、(1)見解析(2)見解析(3)【解析】(1)作輔助線,由中位線定理證明,再由線面平行的判定定理證明即可;(2)連接,由勾股定理證明,,再結(jié)合線面垂直的判定定理證明即可;(3)建立空間直角坐標(biāo)系,利用向量法求面面角的余弦值即可.【詳解】(1)連接交與點(diǎn),連接四邊形為正方形,點(diǎn)為的中點(diǎn)又點(diǎn)為的中點(diǎn),平面,平面平面(2)連接由勾股定理可知,,則同理可證,平面平面(3)建立如下圖所示的空間直角坐標(biāo)系顯然平面的法向量即為平面的法向量,不妨設(shè)為由(2)可知平面,即平面的法向量為又二面角是鈍角二面角的余弦值為【點(diǎn)睛】關(guān)鍵點(diǎn)睛:在第一問中,關(guān)鍵是利用中位線定理找到線線平行,再由定義證明線面平行;在第二問中,關(guān)鍵是利用勾股定理證明線線垂直,從而得出線面垂直;在第三問中,關(guān)鍵是建立坐標(biāo)系,利用向量法求面面角的余弦值.22、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖南短途配送合同范本
- 齊齊哈爾大學(xué)《翻譯》2023-2024學(xué)年第一學(xué)期期末試卷
- 裝飾銷售合同范本
- 環(huán)境技術(shù)合同范本
- 2024美容化妝品供應(yīng)協(xié)議范本
- 面試《年月日》說課稿
- 2024年?duì)I業(yè)用地租賃協(xié)議樣式
- 新生兒預(yù)防接種兒童接種知識(shí)培訓(xùn)
- 城市農(nóng)村房屋買賣合同范本
- 2024招標(biāo)代理協(xié)議格式
- 機(jī)場跑道水泥穩(wěn)定碎石基層施工方案及工藝方法
- ISO9001體系文件與IRIS標(biāo)準(zhǔn)條款對(duì)應(yīng)表
- 漢語教師志愿者培訓(xùn)大綱
- 護(hù)理導(dǎo)論 評(píng)判性思維
- SPC培訓(xùn)資料_2
- 學(xué)習(xí)適應(yīng)性測(cè)驗(yàn)(AAT)
- ADS創(chuàng)建自己的元件庫
- MATLAB仿真三相橋式整流電路(詳細(xì)完美)
- 2019年重慶普通高中會(huì)考通用技術(shù)真題及答案
- 天秤座小奏鳴曲,Libra Sonatine;迪安斯,Roland Dyens(古典吉他譜)
- 鋼筋混凝土工程施工及驗(yàn)收規(guī)范最新(完整版)
評(píng)論
0/150
提交評(píng)論