專題04導數(shù)的基本應(yīng)用(講)(解析版)_第1頁
專題04導數(shù)的基本應(yīng)用(講)(解析版)_第2頁
專題04導數(shù)的基本應(yīng)用(講)(解析版)_第3頁
專題04導數(shù)的基本應(yīng)用(講)(解析版)_第4頁
專題04導數(shù)的基本應(yīng)用(講)(解析版)_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第一篇熱點、難點突破篇專題04導數(shù)的基本應(yīng)用(講)真題體驗感悟高考1.(2022·全國·高考真題(理))當時,函數(shù)取得最大值,則(

)A. B. C. D.1【答案】B【分析】根據(jù)題意可知,即可解得,再根據(jù)即可解出.【詳解】因為函數(shù)定義域為,所以依題可知,,,而,所以,即,所以,因此函數(shù)在上遞增,在上遞減,時取最大值,滿足題意,即有.故選:B.2.(2022·全國·高考真題(文))函數(shù)在區(qū)間的最小值、最大值分別為(

)A. B. C. D.【答案】D【分析】利用導數(shù)求得的單調(diào)區(qū)間,從而判斷出在區(qū)間上的最小值和最大值.【詳解】,所以在區(qū)間和上,即單調(diào)遞增;在區(qū)間上,即單調(diào)遞減,又,,,所以在區(qū)間上的最小值為,最大值為.故選:D3.(2022·全國·高考真題(理))已知,則(

)A. B. C. D.【答案】A【分析】由結(jié)合三角函數(shù)的性質(zhì)可得;構(gòu)造函數(shù),利用導數(shù)可得,即可得解.【詳解】[方法一]:構(gòu)造函數(shù)因為當故,故,所以;設(shè),,所以在單調(diào)遞增,故,所以,所以,所以,故選A[方法二]:不等式放縮因為當,取得:,故,其中,且當時,,及此時,故,故所以,所以,故選A[方法三]:泰勒展開設(shè),則,,,計算得,故選A.[方法四]:構(gòu)造函數(shù)因為,因為當,所以,即,所以;設(shè),,所以在單調(diào)遞增,則,所以,所以,所以,故選:A.[方法五]:【最優(yōu)解】不等式放縮因為,因為當,所以,即,所以;因為當,取得,故,所以.故選:A.【整體點評】方法4:利用函數(shù)的單調(diào)性比較大小,是常見思路,難點在于構(gòu)造合適的函數(shù),屬于通性通法;方法5:利用二倍角公式以及不等式放縮,即可得出大小關(guān)系,屬于最優(yōu)解.4.(2021·全國·高考真題)若過點可以作曲線的兩條切線,則(

)A. B.C. D.【答案】D【分析】解法一:根據(jù)導數(shù)幾何意義求得切線方程,再構(gòu)造函數(shù),利用導數(shù)研究函數(shù)圖象,結(jié)合圖形確定結(jié)果;解法二:畫出曲線的圖象,根據(jù)直觀即可判定點在曲線下方和軸上方時才可以作出兩條切線.【詳解】在曲線上任取一點,對函數(shù)求導得,所以,曲線在點處的切線方程為,即,由題意可知,點在直線上,可得,令,則.當時,,此時函數(shù)單調(diào)遞增,當時,,此時函數(shù)單調(diào)遞減,所以,,由題意可知,直線與曲線的圖象有兩個交點,則,當時,,當時,,作出函數(shù)的圖象如下圖所示:由圖可知,當時,直線與曲線的圖象有兩個交點.故選:D.解法二:畫出函數(shù)曲線的圖象如圖所示,根據(jù)直觀即可判定點在曲線下方和軸上方時才可以作出兩條切線.由此可知.故選:D.【點睛】解法一是嚴格的證明求解方法,其中的極限處理在知識范圍內(nèi)需要用到指數(shù)函數(shù)的增長特性進行估計,解法二是根據(jù)基于對指數(shù)函數(shù)的圖象的清晰的理解與認識的基礎(chǔ)上,直觀解決問題的有效方法.5.(2022·全國·高考真題(文))已知函數(shù),曲線在點處的切線也是曲線的切線.(1)若,求a;(2)求a的取值范圍.【答案】(1)3(2)【分析】(1)先由上的切點求出切線方程,設(shè)出上的切點坐標,由斜率求出切點坐標,再由函數(shù)值求出即可;(2)設(shè)出上的切點坐標,分別由和及切點表示出切線方程,由切線重合表示出,構(gòu)造函數(shù),求導求出函數(shù)值域,即可求得的取值范圍.(1)由題意知,,,,則在點處的切線方程為,即,設(shè)該切線與切于點,,則,解得,則,解得;(2),則在點處的切線方程為,整理得,設(shè)該切線與切于點,,則,則切線方程為,整理得,則,整理得,令,則,令,解得或,令,解得或,則變化時,的變化情況如下表:01000則的值域為,故的取值范圍為.總結(jié)規(guī)律預測考向(一)規(guī)律與預測1.高考對本部分的要求一般有三個層次:第一層次主要考查求導公式,求導法則與導數(shù)的幾何意義;第二層次是導數(shù)的簡單應(yīng)用,包括求函數(shù)的單調(diào)區(qū)間、極值、最值等;第三層次是綜合考查,如研究函數(shù)零點、證明不等式、恒成立問題、求參數(shù)等,包括解決應(yīng)用問題,將導數(shù)內(nèi)容和傳統(tǒng)內(nèi)容中有關(guān)不等式、數(shù)列及函數(shù)單調(diào)性有機結(jié)合,設(shè)計綜合題.2.導數(shù)的計算和幾何意義是高考命題的熱點,多以選擇題、填空題形式考查,難度較小.3.應(yīng)用導數(shù)研究函數(shù)的單調(diào)性、極值、最值多在選擇題、填空題靠后的位置考查,難度中等偏上,屬綜合性問題.4.涉及導數(shù)的幾何意義、單調(diào)性、極(最)值的求參數(shù)取值范圍問題,是常考題型.(二)本專題考向展示考點突破典例分析考向一導數(shù)的幾何意義【核心知識】1.基本初等函數(shù)的導數(shù)公式原函數(shù)導函數(shù)f(x)=c(c為常數(shù))f′(x)=0f(x)=xn(n∈Q*)f′(x)=nxn-1f(x)=sinxf′(x)=cosxf(x)=cosxf′(x)=-sinxf(x)=axf′(x)=axlnaf(x)=exf′(x)=exf(x)=logaxf′(x)=eq\f(1,xlna)f(x)=lnxf′(x)=eq\f(1,x)2.導數(shù)的運算法則(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)(g(x)≠0).3.函數(shù)f(x)在x0處的導數(shù)是曲線f(x)在點P(x0,f(x0))處的切線的斜率,曲線f(x)在點P處的切線的斜率k=f′(x0),相應(yīng)的切線方程為y-f(x0)=f′(x0)·(x-x0).警示:求曲線的切線方程時,要注意是在點P處的切線還是過點P的切線,前者點P為切點,后者點P不一定為切點.【典例分析】典例1.(2022·貴州遵義·高三期中(理))若直線與曲線相切,則切點的坐標為_____________.【答案】【分析】設(shè)切點為,求出函數(shù)的導函數(shù),即可得到方程組,解得即可.【詳解】解:設(shè)切點為,,,又,,解得,∴切點坐標為.故答案為:典例2.(2021·全國·高考真題)已知函數(shù),函數(shù)的圖象在點和點的兩條切線互相垂直,且分別交y軸于M,N兩點,則取值范圍是_______.【答案】【分析】結(jié)合導數(shù)的幾何意義可得,結(jié)合直線方程及兩點間距離公式可得,,化簡即可得解.【詳解】由題意,,則,所以點和點,,所以,所以,所以,同理,所以.故答案為:【點睛】關(guān)鍵點點睛:解決本題的關(guān)鍵是利用導數(shù)的幾何意義轉(zhuǎn)化條件,消去一個變量后,運算即可得解.典例3.(2019·江蘇·高考真題)在平面直角坐標系中,P是曲線上的一個動點,則點P到直線x+y=0的距離的最小值是_____.【答案】4.【分析】將原問題轉(zhuǎn)化為切點與直線之間的距離,然后利用導函數(shù)確定切點坐標可得最小距離【詳解】當直線平移到與曲線相切位置時,切點Q即為點P到直線的距離最小.由,得,,即切點,則切點Q到直線的距離為,故答案為.【點睛】本題考查曲線上任意一點到已知直線的最小距離,滲透了直觀想象和數(shù)學運算素養(yǎng).采取導數(shù)法和公式法,利用數(shù)形結(jié)合和轉(zhuǎn)化與化歸思想解題.【總結(jié)提升】1.求曲線y=f(x)的切線方程的三種類型及方法(1)已知切點P(x0,y0),求y=f(x)過點P的切線方程:求出切線的斜率f′(x0),由點斜式寫出方程.(2)已知切線的斜率為k,求y=f(x)的切線方程:設(shè)切點P(x0,y0),通過方程k=f′(x0)解得x0,再由點斜式寫出方程.(3)已知切線上一點(非切點),求y=f(x)的切線方程:設(shè)切點P(x0,y0),利用導數(shù)求得切線斜率f′(x0),然后由斜率公式求得切線斜率,列方程(組)解得x0,再由點斜式或兩點式寫出方程.2.一些距離類最值,可以轉(zhuǎn)化為求一條直線上的點到一條曲線上的點的最小值,此時與已知直線平行的曲線的切線到已知直線的距離即為最小值.考向二利用導數(shù)的幾何意義求參數(shù)【核心知識】主要涉及公切線問題、兩直線位置關(guān)系問題、切點坐標、切線的斜率(切線方程)問題以及與切線相關(guān)的距離問題.【典例分析】典例4.(2022·河南·一模(理))已知曲線在點處的切線與直線垂直,則實數(shù)的值為(

).A. B. C. D.【答案】A【分析】根據(jù)導數(shù)幾何意義和垂直關(guān)系可得,解方程即可.【詳解】令,則,在點處的切線與垂直,,解得:.故選:A.典例5.(2021·全國·高考真題)若過點可以作曲線的兩條切線,則(

)A. B.C. D.【答案】D【分析】解法一:根據(jù)導數(shù)幾何意義求得切線方程,再構(gòu)造函數(shù),利用導數(shù)研究函數(shù)圖象,結(jié)合圖形確定結(jié)果;解法二:畫出曲線的圖象,根據(jù)直觀即可判定點在曲線下方和軸上方時才可以作出兩條切線.【詳解】在曲線上任取一點,對函數(shù)求導得,所以,曲線在點處的切線方程為,即,由題意可知,點在直線上,可得,令,則.當時,,此時函數(shù)單調(diào)遞增,當時,,此時函數(shù)單調(diào)遞減,所以,,由題意可知,直線與曲線的圖象有兩個交點,則,當時,,當時,,作出函數(shù)的圖象如下圖所示:由圖可知,當時,直線與曲線的圖象有兩個交點.故選:D.解法二:畫出函數(shù)曲線的圖象如圖所示,根據(jù)直觀即可判定點在曲線下方和軸上方時才可以作出兩條切線.由此可知.故選:D.典例6.(2022·全國·高考真題)若曲線有兩條過坐標原點的切線,則a的取值范圍是___________.【答案】【分析】設(shè)出切點橫坐標,利用導數(shù)的幾何意義求得切線方程,根據(jù)切線經(jīng)過原點得到關(guān)于的方程,根據(jù)此方程應(yīng)有兩個不同的實數(shù)根,求得的取值范圍.【詳解】∵,∴,設(shè)切點為,則,切線斜率,切線方程為:,∵切線過原點,∴,整理得:,∵切線有兩條,∴,解得或,∴的取值范圍是,故答案為:【總結(jié)提升】利用導數(shù)的幾何意義求參數(shù)的基本方法利用切點的坐標、切線的斜率、切線方程等得到關(guān)于參數(shù)的方程(組)或者參數(shù)滿足的不等式(組),進而求出參數(shù)的值或取值范圍.考向三利用導數(shù)研究函數(shù)的單調(diào)性【核心知識】導數(shù)與單調(diào)性的關(guān)系1.f′(x)>0是f(x)為增函數(shù)的充分不必要條件,如函數(shù)f(x)=x3在(-∞,+∞)上單調(diào)遞增,但f′(x)≥0;2.f′(x)≥0是f(x)為增函數(shù)的必要不充分條件,當函數(shù)在某個區(qū)間內(nèi)恒有f′(x)=0時,則f(x)為常數(shù),函數(shù)不具有單調(diào)性.【典例分析】典例7.(2022·全國·高考真題)設(shè),則(

)A. B. C. D.【答案】C【分析】構(gòu)造函數(shù),導數(shù)判斷其單調(diào)性,由此確定的大小.【詳解】方法一:構(gòu)造法設(shè),因為,當時,,當時,所以函數(shù)在單調(diào)遞減,在上單調(diào)遞增,所以,所以,故,即,所以,所以,故,所以,故,設(shè),則,令,,當時,,函數(shù)單調(diào)遞減,當時,,函數(shù)單調(diào)遞增,又,所以當時,,所以當時,,函數(shù)單調(diào)遞增,所以,即,所以故選:C.方法二:比較法解:,,,①,令則,故在上單調(diào)遞減,可得,即,所以;②,令則,令,所以,所以在上單調(diào)遞增,可得,即,所以在上單調(diào)遞增,可得,即,所以故【注:此類問題已連年考查】典例8.(2022·廣西北?!ひ荒#ㄎ模┖瘮?shù)的增區(qū)間為____________.【答案】##【分析】解不等式即得解.【詳解】由題得,可得.故函數(shù)的增區(qū)間為.故答案為:典例9.(2021·全國·高考真題(文))設(shè)函數(shù),其中.(1)討論的單調(diào)性;(2)若的圖象與軸沒有公共點,求a的取值范圍.【答案】(1)的減區(qū)間為,增區(qū)間為;(2).【分析】(1)求出函數(shù)的導數(shù),討論其符號后可得函數(shù)的單調(diào)性.(2)根據(jù)及(1)的單調(diào)性性可得,從而可求a的取值范圍.【詳解】(1)函數(shù)的定義域為,又,因為,故,當時,;當時,;所以的減區(qū)間為,增區(qū)間為.(2)因為且的圖與軸沒有公共點,所以的圖象在軸的上方,由(1)中函數(shù)的單調(diào)性可得,故即.【點睛】方法點睛:不等式的恒成立問題,往往可轉(zhuǎn)化為函數(shù)的最值的符號來討論,也可以參變分離后轉(zhuǎn)化不含參數(shù)的函數(shù)的最值問題,轉(zhuǎn)化中注意等價轉(zhuǎn)化.【規(guī)律方法】1.求函數(shù)的單調(diào)區(qū)間,只需在函數(shù)的定義域內(nèi)解(證)不等式(或).2.利用導數(shù)比較大小或解不等式,常常要構(gòu)造新函數(shù),把比較大小或求解不等式的問題轉(zhuǎn)化為利用導數(shù)研究函數(shù)單調(diào)性的問題,再由單調(diào)性比較大小或解不等式.常見構(gòu)造的輔助函數(shù)有:g(x)=xf(x),g(x)=,g(x)=exf(x),g(x)=,g(x)=f(x)lnx,g(x)=等.3.溫馨提醒:(1)在利用導數(shù)討論函數(shù)的單調(diào)區(qū)間時,首先要確定函數(shù)的定義域.(2)單調(diào)區(qū)間的劃分要注意對導數(shù)等于零的點的確認.(3)所求函數(shù)的單調(diào)區(qū)間不止一個,這些區(qū)間之間不能用并集“∪”及“或”連接,只能用“,”“和”字隔開.考向四由函數(shù)的單調(diào)性求參數(shù)取值范圍【核心知識】(1)可導函數(shù)在區(qū)間(a,b)上單調(diào),實際上就是在該區(qū)間上f′(x)≥0(或f′(x)≤0)恒成立,得到關(guān)于參數(shù)的不等式,從而轉(zhuǎn)化為求函數(shù)的最值問題,求參數(shù)的取值范圍;(2)可導函數(shù)在區(qū)間(a,b)上存在單調(diào)區(qū)間,實際上就是f′(x)>0(或f′(x)<0)在該區(qū)間上存在解集,即f′(x)max>0(或f′(x)min<0)在該區(qū)間上有解,從而轉(zhuǎn)化為不等式問題,求參數(shù)的取值范圍.【典例分析】典例10.(2022·上海市進才高三期中)已知在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是__________.【答案】.【分析】求導后得到在上恒成立,參變分離后得到在上恒成立,利用導函數(shù)求出,從而求出實數(shù)的取值范圍.【詳解】,,故只需在上恒成立,則在上恒成立,其中在上恒成立,故,所以,故答案為:.典例11.(2022·陜西·蒲城縣蒲城高三階段練習(理))已知函數(shù)在上不單調(diào),則的取值范圍是__________.【答案】【分析】結(jié)合函數(shù)的導數(shù)討論單調(diào)性,確定函數(shù)在上既有增區(qū)間又有減區(qū)間即可求解.【詳解】由題可知,,令,因為,所以,則在單調(diào)遞減,所以,若,則恒成立,即恒成立,則函數(shù)在上單調(diào)遞減,不滿足題意;若,則,因為,,所以,所以由零點的唯一性定理可知,在必定存在唯一的零點記為,所以當時,即,時,即,所以在時單調(diào)遞增,時單調(diào)遞減,滿足題意;綜上得,故答案為:.典例12.(2019·北京·高考真題(理))設(shè)函數(shù)f(x)=ex+ae?x(a為常數(shù)).若f(x)為奇函數(shù),則a=________;若f(x)是R上的增函數(shù),則a的取值范圍是___________.【答案】

-1;

.【分析】首先由奇函數(shù)的定義得到關(guān)于的恒等式,據(jù)此可得的值,然后利用導函數(shù)的解析式可得a的取值范圍.【詳解】若函數(shù)為奇函數(shù),則,對任意的恒成立.若函數(shù)是上的增函數(shù),則恒成立,.即實數(shù)的取值范圍是【總結(jié)提升】1.利用單調(diào)性確定參數(shù)的范圍.解答過程中,需利用轉(zhuǎn)化與化歸思想,轉(zhuǎn)化成恒成立問題.應(yīng)用條件(或),恒成立,解出參數(shù)的取值范圍(一般可用不等式恒成立的理論求解),應(yīng)注意參數(shù)的取值范圍是不恒等于0的參數(shù)的取值范圍.2.可導函數(shù)在區(qū)間(a,b)上存在單調(diào)區(qū)間,實際上就是f′(x)>0(或f′(x)<0)在該區(qū)間上存在解集,從而轉(zhuǎn)化為不等式問題,求出參數(shù)的取值范圍.再驗證參數(shù)取“=”時f(x)是否滿足題意.3.若已知f(x)在區(qū)間I上的單調(diào)性,區(qū)間I上含有參數(shù)時,可先求出f(x)的單調(diào)區(qū)間,令I(lǐng)是其單調(diào)區(qū)間的子集,從而求出參數(shù)的取值范圍.4.函數(shù)在上不單調(diào),則轉(zhuǎn)化為在上有解.5.特別提醒:(1)弄清參數(shù)對f′(x)符號的影響,分類討論要不重不漏.(2)已知函數(shù)單調(diào)性求參數(shù)范圍,要注意導數(shù)等于零的情況.考向五利用導數(shù)研究函數(shù)的極值、最值【核心知識】1.導數(shù)與極值、最值(1)函數(shù)f(x)在x0處的導數(shù)f′(x0)=0且f′(x)在x0附近“左正右負”?f(x)在x0處取極大值;函數(shù)f(x)在x0處的導數(shù)f′(x0)=0且f′(x)在x0附近“左負右正”?f(x)在x0處取極小值.(2)函數(shù)f(x)在一閉區(qū)間上的最大值是此函數(shù)在該區(qū)間上的極值與該區(qū)間端點處函數(shù)值中的“最大者”;函數(shù)f(x)在一閉區(qū)間上的最小值是此函數(shù)在該區(qū)間上的極值與該區(qū)間端點處函數(shù)值中的“最小者”.2.求函數(shù)f(x)在[a,b]上的最大值和最小值的步驟(1)求函數(shù)在(a,b)內(nèi)的極值.(2)求函數(shù)在區(qū)間端點處的函數(shù)值f(a),f(b).(3)將函數(shù)f(x)的各極值與f(a),f(b)比較,其中最大的一個為最大值,最小的一個為最小值.【典例分析】典例13.【多選題】(2022·全國·高考真題)已知函數(shù)的圖像關(guān)于點中心對稱,則(

)A.在區(qū)間單調(diào)遞減B.在區(qū)間有兩個極值點C.直線是曲線的對稱軸D.直線是曲線的切線【答案】AD【分析】根據(jù)三角函數(shù)的性質(zhì)逐個判斷各選項,即可解出.【詳解】由題意得:,所以,,即,又,所以時,,故.對A,當時,,由正弦函數(shù)圖象知在上是單調(diào)遞減;對B,當時,,由正弦函數(shù)圖象知只有1個極值點,由,解得,即為函數(shù)的唯一極值點;對C,當時,,,直線不是對稱軸;對D,由得:,解得或,從而得:或,所以函數(shù)在點處的切線斜率為,切線方程為:即.故選:AD.典例14.(2019·全國·高考真題(文))已知函數(shù).(1)討論的單調(diào)性;(2)當時,記在區(qū)間的最大值為,最小值為,求的取值范圍.【答案】(1)見詳解;(2).【分析】(1)先求的導數(shù),再根據(jù)的范圍分情況討論函數(shù)單調(diào)性;(2)討論的范圍,利用函數(shù)單調(diào)性進行最大值和最小值的判斷,最終求得的取值范圍.【詳解】(1)對求導得.所以有當時,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增;當時,區(qū)間上單調(diào)遞增;當時,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增.(2)若,在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間上最小值為.而,故所以區(qū)間上最大值為.所以,設(shè)函數(shù),求導當時從而單調(diào)遞減.而,所以.即的取值范圍是.若,在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間上最小值為而,故所以區(qū)間上最大值為.所以,而,所以.即的取值范圍是.綜上得的取值范圍是.【特別提醒】1.不能忽略函數(shù)的定義域.2.是可導函數(shù)在處取得極值的必要不充分條件.3.函數(shù)的極小值不一定比極大值小.4.若函數(shù)在區(qū)間上有唯一的極值點,則這個極值點也是最值點,此結(jié)論在導數(shù)的實際應(yīng)用中經(jīng)常用到.考向六函數(shù)的極(最)值相關(guān)參數(shù)問題【核心知識】由函數(shù)極值(個數(shù))求參數(shù)的值或范圍.討論極值點有無(個數(shù))問題,轉(zhuǎn)化為討論f′(x)=0根的有無(個數(shù)).然后由已知條件列出方程或不等式求出參數(shù)的值或范圍,特別注意:極值點處的導數(shù)為0,而導數(shù)為0的點不一定是極值點,要檢驗極值點兩側(cè)導數(shù)是否異號.【典例分析】典例15.(2021·全國·高考真題(理))設(shè),若為函數(shù)的極大值點,則(

)A. B. C. D.【答案】D【分析】先考慮函數(shù)的零點情況,注意零點左右附近函數(shù)值是否變號,結(jié)合極大值點的性質(zhì),對進行分類討論,畫出圖象,即可得到所滿足的關(guān)系,由此確定正確選項.【詳解】若,則為單調(diào)函數(shù),無極值點,不符合題意,故.有和兩個不同零點,且在左右附近是不變號,在左右附近是變號的.依題意,為函數(shù)的極大值點,在左右附近都是小于零的.當時,由,,畫出的圖象如下圖所示:由圖可知,,故.當時,由時,,畫出的圖象如下圖所示:由圖可知,,故.綜上所述,成立.故選:D典例16.(2022·廣東實驗高三階段練習)設(shè),若函數(shù)在區(qū)間有極值點,則取值范圍為(

)A. B. C. D.【答案】B【分析】先對函數(shù)求導,根據(jù)函數(shù)在區(qū)間有極值點,轉(zhuǎn)化為導函數(shù)有零點,再由零點存在定理列出不等式求解即可.【詳解】,為單調(diào)函數(shù),所以函數(shù)在區(qū)間有極值點,即,代入解得,解得取值范圍為,故選:B.典例17.(2022·全國·高考真題(理))已知和分別是函數(shù)(且)的極小值點和極大值點.若,則a的取值范圍是____________.【答案】【分析】法一:依題可知,方程的兩個根為,即函數(shù)與函數(shù)的圖象有兩個不同的交點,構(gòu)造函數(shù),利用指數(shù)函數(shù)的圖象和圖象變換得到的圖象,利用導數(shù)的幾何意義求得過原點的切線的斜率,根據(jù)幾何意義可得出答案.【詳解】[方法一]:【最優(yōu)解】轉(zhuǎn)化法,零點的問題轉(zhuǎn)為函數(shù)圖象的交點因為,所以方程的兩個根為,即方程的兩個根為,即函數(shù)與函數(shù)的圖象有兩個不同的交點,因為分別是函數(shù)的極小值點和極大值點,所以函數(shù)在和上遞減,在上遞增,所以當時,,即圖象在上方當時,,即圖象在下方,圖象顯然不符合題意,所以.令,則,設(shè)過原點且與函數(shù)的圖象相切的直線的切點為,則切線的斜率為,故切線方程為,則有,解得,則切線的斜率為,因為函數(shù)與函數(shù)的圖象有兩個不同的交點,所以,解得,又,所以,綜上所述,的取值范圍為.[方法二]:【通性通法】構(gòu)造新函數(shù),二次求導=0的兩個根為因為分別是函數(shù)的極小值點和極大值點,所以函數(shù)在和上遞減,在上遞增,設(shè)函數(shù),則,若,則在上單調(diào)遞增,此時若,則在上單調(diào)遞減,在上單調(diào)遞增,此時若有和分別是函數(shù)且的極小值點和極大值點,則,不符合題意;若,則在上單調(diào)遞減,此時若,則在上單調(diào)遞增,在上單調(diào)遞減,令,則,此時若有和分別是函數(shù)且的極小值點和極大值點,且,則需滿足,,即故,所以.【整體點評】法一:利用函數(shù)的零點與兩函數(shù)圖象交點的關(guān)系,由數(shù)形結(jié)合解出,突出“小題小做”,是該題的最優(yōu)解;法二:通過構(gòu)造新函數(shù),多次求導判斷單調(diào)性,根據(jù)極值點的大小關(guān)系得出不等式,解出即可,該法屬于通性通法.典例18.(2022·北京海淀·高三期中)已知函數(shù).①當時,的極值點個數(shù)為__________;②若恰有兩個極值點,則的取值范圍是__________.【答案】

【分析】①驗證分段處函數(shù)值可知為連續(xù)函數(shù),由單調(diào)性可確定和是的極值點,由此可得極值點個數(shù);②驗證分段處函數(shù)值可知為連續(xù)函數(shù),根據(jù)一次函數(shù)和二次函數(shù)單調(diào)性可確定和必為的兩個極值點,得到;根據(jù)二次函數(shù)的單調(diào)性,結(jié)合極值點定義可知在上單調(diào)遞增,即;由此可得的范圍.【詳解】①當時,;,為連續(xù)函數(shù);在上單調(diào)遞增,在上單調(diào)遞減,和是的極值點,即的極值點個數(shù)為;②,為連續(xù)函數(shù),為單調(diào)函數(shù),在上無極值點;又在上至多有一個極值點,和必為的兩個極值點,,解得:,又在上單調(diào)遞減,在上單調(diào)遞增,;綜上所述:實數(shù)的取值范圍為.故答案為:.【點睛】易錯點睛:本題考查函數(shù)極值點的定義、根據(jù)極值點個數(shù)求解參數(shù)范圍的問題;本題易錯的點在于根據(jù)極值點個數(shù)求解參數(shù)范圍時,確定和為的兩個極值點后,忽略在極值點左右兩側(cè)函數(shù)單調(diào)性需發(fā)生改變,導致丟失的范圍.【特別提醒】1.已知函數(shù)極值(個數(shù)),確定函數(shù)解析式中的參數(shù)時,注意以下兩點:(1)根據(jù)極值點的導數(shù)為0和極值這兩個

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論