南昌市重點中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第1頁
南昌市重點中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第2頁
南昌市重點中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第3頁
南昌市重點中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第4頁
南昌市重點中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

南昌市重點中學(xué)2024屆高二數(shù)學(xué)第一學(xué)期期末調(diào)研模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知a,b為不相等實數(shù),記,則M與N的大小關(guān)系為()A. B.C. D.不確定2.已知直線與拋物線C:相交于A,B兩點,O為坐標原點,,的斜率分別為,,則()A. B.C. D.3.用反證法證明命題“a,b∈N,如果ab可以被5整除,那么a,b至少有1個能被5整除.”假設(shè)內(nèi)容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a不能被5整除 D.a,b有1個不能被5整除4.函數(shù)的圖像在點處的切線方程為()A. B.C. D.5.在正方體中,與直線和都垂直,則直線與的關(guān)系是()A.異面 B.平行C.垂直不相交 D.垂直且相交6.已知函數(shù),則()A.函數(shù)的極大值為,無極小值 B.函數(shù)的極小值為,無極大值C.函數(shù)的極大值為0,無極小值 D.函數(shù)的極小值為0,無極大值7.已知F為橢圓C:=1(a>b>0)右焦點,O為坐標原點,P為橢圓C上一點,若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-18.下列結(jié)論中正確的個數(shù)為()①,;②;③A.0 B.1C.2 D.39.不等式表示的平面區(qū)域是一個()A.三角形 B.直角三角形C.矩形 D.梯形10.若數(shù)列的前n項和(n∈N*),則=()A.20 B.30C.40 D.5011.在正方體中,AC與BD的交點為M.設(shè)則下列向量與相等的向量是()A. B.C. D.12.古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,著作中有這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知O(0,0),A(3,0),動點P(x,y)滿,則動點P軌跡與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為__________14.橢圓的焦距為______.15.已知動圓P過定點,且在定圓的內(nèi)部與其相內(nèi)切,則動圓P的圓心的軌跡方程為______16.設(shè)雙曲線C:的焦點為,點為上一點,,則為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某城市一入城交通路段限速60公里/小時,現(xiàn)對某時段通過該交通路段的n輛小汽車車速進行統(tǒng)計,并繪制成頻率分布直方圖(如圖).若這n輛小汽車中,速度在50~60公里小時之間的車輛有200輛.(1)求n的值;(2)估計這n輛小汽車車速的中位數(shù);(3)根據(jù)交通法規(guī)定,小車超速在規(guī)定時速10%以內(nèi)(含10%)不罰款,超過時速規(guī)定10%以上,需要罰款.試根據(jù)頻率分布直方圖,以頻率作為概率的估計值,估計某輛小汽車在該時段通過該路段時被罰款的概率.18.(12分)已知圓與軸相切,圓心在直線上,且到直線的距離為(1)求圓的方程;(2)若圓的圓心在第一象限,過點的直線與相交于、兩點,且,求直線的方程19.(12分)等差數(shù)列前n項和為,且(1)求通項公式;(2)記,求數(shù)列的前n項和20.(12分)在柯橋古鎮(zhèn)的開發(fā)中,為保護古橋OA,規(guī)劃在O的正東方向100m的C處向?qū)Π禔B建一座新橋,使新橋BC與河岸AB垂直,并設(shè)立一個以線段OA上一點M為圓心,與直線BC相切的圓形保護區(qū)(如圖所示),且古橋兩端O和A與圓上任意一點的距離都不小于50m,經(jīng)測量,點A位于點O正南方向25m,,建立如圖所示直角坐標系(1)求新橋BC的長度;(2)當(dāng)OM多長時,圓形保護區(qū)的面積最???21.(12分)在平面直角坐標系xOy中,已知點、,點M滿足,記點M的軌跡為C(1)求C的方程;(2)若直線l過圓圓心D且與圓交于A,B兩點,點P為C上一個動點,求的最小值22.(10分)如圖,在三棱錐A-BCD中,O為線段BD中點,是邊長為1正三角形,且OA⊥BC,AB=AD(1)證明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE與平面BCD的夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用作差法即可比較M與N的大小﹒【詳解】因為,又,所以,即故選:A2、C【解析】設(shè),,由消得:,又,由韋達定理代入計算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運算求解能力.3、B【解析】由于反證法是命題的否定的一個運用,故用反證法證明命題時,可以設(shè)其否定成立進行推證.命題“a,b∈N,如果ab可被5整除,那么a,b至少有1個能被5整除.”的否定是“a,b都不能被5整除”考點:反證法4、B【解析】求得函數(shù)的導(dǎo)數(shù),計算出和的值,可得出所求切線的點斜式方程,化簡即可.詳解】,,,,因此,所求切線的方程為,即.故選:B.【點睛】本題考查利用導(dǎo)數(shù)求解函圖象的切線方程,考查計算能力,屬于基礎(chǔ)題5、B【解析】以為坐標原點,所在直線分別為軸,軸,軸建立空間直角坐標系,根據(jù)向量垂直的坐標表示求出,再利用向量的坐標運算可得,根據(jù)共線定理即可判斷.【詳解】設(shè)正方體的棱長為1.以為坐標原點,所在直線分別為軸,軸,軸建立空間直角坐標系,則.設(shè),則,取.,.故選:B【點睛】本題考查了空間向量垂直的坐標表示、空間向量的坐標表示、空間向量共線定理,屬于基礎(chǔ)題.6、A【解析】利用導(dǎo)數(shù)來求得的極值.【詳解】的定義域為,,在遞增;在遞減,所以的極大值為,沒有極小值.故選:A7、D【解析】記橢圓的左焦點為,在中,通過余弦定理得出,,根據(jù)橢圓的定義可得,進而可得結(jié)果.【詳解】記橢圓的左焦點為,在中,可得,在中,可得,故,故,故選:D.8、C【解析】構(gòu)造函數(shù)利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調(diào)遞增,所以,即,即,,故①正確;令,,則,所以當(dāng)時,,當(dāng)時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即恒成立,所以,故②正確;令,,當(dāng)時,當(dāng)時,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以,當(dāng)且僅當(dāng)時取等號,故③錯誤;故選:C9、D【解析】作出不等式組所表示平面區(qū)域,可得出結(jié)論.【詳解】由可得或,作出不等式組所表示的平面區(qū)域如下圖中的陰影部分區(qū)域所示:由圖可知,不等式表示的平面區(qū)域是一個梯形.故選:D.10、B【解析】由前項和公式直接作差可得.【詳解】數(shù)列的前n項和(n∈N*),所以.故選:B.11、C【解析】根據(jù)空間向量的運算法則,推出的向量表示,可得答案.【詳解】,故選:C.12、A【解析】首先求得點的軌跡,再利用圓心距與半徑的關(guān)系,即可判斷兩圓的位置關(guān)系.【詳解】由條件可知,,化簡為:,動點的軌跡是以為圓心,2為半徑的圓,圓是以為圓心,為半徑的圓,兩圓圓心間的距離,所以兩圓相交.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵雙曲線的方程為∴,∴∴故答案為14、【解析】由求出即可.【詳解】可化為,設(shè)焦距為,則,則焦距故答案為:15、【解析】設(shè)切點為,根據(jù)題意,列出點滿足的關(guān)系式即.則點的軌跡是橢圓,然后根據(jù)橢圓的標準方程求點的軌跡方程【詳解】設(shè)動圓和定圓內(nèi)切于點,動點到定點和定圓圓心距離之和恰好等于定圓半徑,即,點的軌跡是以,為兩焦點,長軸長為10的橢圓,,點的軌跡方程為,故答案:16、14【解析】利用雙曲線的定義求解即可【詳解】由,得,則,因為點為上一點,所以,因為,所以,解得或(舍去),故答案為:14三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】(1)根據(jù)已知條件,結(jié)合頻率與頻數(shù)的關(guān)系,即可求解(2)根據(jù)已知條件,結(jié)合中位數(shù)公式,即可求解(3)在這500輛小車中,有40輛超速,再結(jié)合古典概型的概率公式,即可求解【小問1詳解】解:由直方圖可知,速度在公里小時之間的頻率為,所以,解得【小問2詳解】解:設(shè)這輛小汽車車速的中位數(shù)為,則,解得小問3詳解】解:由交通法則可知,小車速度在66公里小時以上需要罰款,由直方圖可知,小車速度在之間有輛,由統(tǒng)計的有關(guān)知識,可以認為車速在公里小時之間的小車有輛,小車速度在之間有輛,故估計某輛小汽車在該時段通過該路段時被罰放的概率為18、(1)或(2)或【解析】(1)設(shè)圓心的坐標為,則該圓的半徑長為,利用點到直線的距離公式可求得的值,即可得出圓的標準方程;(2)利用勾股定理可求得圓心到的距離,分析可知直線的斜率存在,設(shè)直線的方程為,利用點到直線的距離公式可求得關(guān)于的方程,解出的值,即可得出直線的方程.【小問1詳解】解:設(shè)圓心的坐標為,則該圓的半徑長為,因為圓心到直線的距離為,解得,所以圓心的坐標為或,半徑為,因此,圓的標準方程為或.【小問2詳解】解:若圓的圓心在第一象限,則圓的標準方程為.因為,所以圓心到直線的距離.若直線的斜率不存在,則直線的方程為,此時圓心到直線的距離為,不合乎題意;所以,直線的斜率存在,可設(shè)直線的方程為,即,由題意可得,解得,所以,直線的方程為或,即或.19、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件求,利用等差數(shù)列的通項公式可求得數(shù)列的通項公式.(2)求得,利用裂項相消法即可求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,解得,所以,故數(shù)列的通項公式;【小問2詳解】由(1)得:,所以,所以.20、(1)80m;(2).【解析】(1)根據(jù)斜率的公式,結(jié)合解方程組法和兩點間距離公式進行求解即可;(2)根據(jù)圓的切線性質(zhì)進行求解即可.【小問1詳解】由題意,可知,,∵∴直線BC方程:①,同理可得:直線AB方程:②由①②可知,∴,從而得故新橋BC得長度為80m【小問2詳解】設(shè),則,圓心,∵直線BC與圓M相切,∴半徑,又因為,∵∴,所以當(dāng)時,圓M的面積達到最小21、(1)(2)23【解析】(1)根據(jù)雙曲線的定義判斷軌跡,直接寫出軌跡方程即可;(2)設(shè),利用向量坐標運算計算,再由二次函數(shù)求最值即可.【小問1詳解】由,則軌跡C是以點、為左、右焦點的雙曲線的右支,設(shè)軌跡C的方程為,則,可得,,所以C的方程為;【小問2詳解】設(shè),則,且,圓心,則因為,則當(dāng)時,取最小值23.22、(1)證明見解析(2)【解析】(1)由題意可得OA⊥平面BCD,從而可證明.(2)作OF⊥BD交BC于點F,如圖,以O(shè)為坐標原點,分別以O(shè)F,OD,OA所在直線軸建立空間直角坐標系,利用向量法可求解.【小問1詳解】因為AB=AD,O為BD中點,所以O(shè)A⊥BD因為OA⊥BC,且BD,BC平面BCD,BD∩BC=B,所以O(shè)A⊥平面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論