內(nèi)蒙古一機(jī)集團(tuán)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第1頁(yè)
內(nèi)蒙古一機(jī)集團(tuán)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第2頁(yè)
內(nèi)蒙古一機(jī)集團(tuán)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第3頁(yè)
內(nèi)蒙古一機(jī)集團(tuán)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第4頁(yè)
內(nèi)蒙古一機(jī)集團(tuán)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

內(nèi)蒙古一機(jī)集團(tuán)第一中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末經(jīng)典試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在長(zhǎng)方體中,()A. B.C. D.2.函數(shù)的導(dǎo)函數(shù)為()A. B.C. D.3.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.4.已知等差數(shù)列共有項(xiàng),其中奇數(shù)項(xiàng)之和為290,偶數(shù)項(xiàng)之和為261,則的值為()A.30 B.29C.28 D.275.已知拋物線,過點(diǎn)與拋物線C有且只有一個(gè)交點(diǎn)的直線有()條A.0 B.1C.2 D.36.如圖,某圓錐的軸截面是等邊三角形,點(diǎn)是底面圓周上的一點(diǎn),且,點(diǎn)是的中點(diǎn),則異面直線與所成角的余弦值是()A. B.C. D.7.已知離散型隨機(jī)變量X的分布列如下:X123P則數(shù)學(xué)期望()A. B.C.1 D.28.若,則()A B.C. D.9.已知拋物線的焦點(diǎn)為F,,點(diǎn)是拋物線上的動(dòng)點(diǎn),則當(dāng)?shù)闹底钚r(shí),=()A.1 B.2C. D.410.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或11.設(shè)圓:和圓:交于A,B兩點(diǎn),則線段AB所在直線的方程為()A. B.C. D.12.已知數(shù)列滿足:,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等比數(shù)列的各項(xiàng)均為正數(shù),且,則__________.14.寫出一個(gè)公比為3,且第三項(xiàng)小于1的等比數(shù)列______15.如圖,一個(gè)酒杯的內(nèi)壁的軸截面是拋物線的一部分,杯口寬cm,杯深8cm,稱為拋物線酒杯.①在杯口放一個(gè)表面積為的玻璃球,則球面上的點(diǎn)到杯底的最小距離為______cm;②在杯內(nèi)放入一個(gè)小的玻璃球,要使球觸及酒杯底部,則玻璃球的半徑的取值范圍為______(單位:cm)16.在平面直角坐標(biāo)系xOy中,AB是圓O:x2+y2=1的直徑,且點(diǎn)A在第一象限;圓O1:(x﹣a)2+y2=r2(a>0)與圓O外離,線段AO1與圓O1交于點(diǎn)M,線段BM與圓O交于點(diǎn)N,且,則a的取值范圍為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若是雙曲線的兩個(gè)焦點(diǎn).(1)若雙曲線上一點(diǎn)到它的一個(gè)焦點(diǎn)的距離等于10,求點(diǎn)到另一個(gè)焦點(diǎn)距離;(2)如圖若是雙曲線左支上一點(diǎn),且,求的面積.18.(12分)如圖,在四棱錐中,平面,,且,,,,,為的中點(diǎn)(1)求證:平面;(2)在線段上是否存在一點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由19.(12分)如圖,在空間四邊形中,分別是的中點(diǎn),分別在上,且(1)求證:四點(diǎn)共面;(2)設(shè)與交于點(diǎn),求證:三點(diǎn)共線.20.(12分)在等差數(shù)列中,,前10項(xiàng)和(1)求列通項(xiàng)公式;(2)若數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,求的前8項(xiàng)和21.(12分)已知等差數(shù)列中,,.(1)求的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.22.(10分)2021年國(guó)慶期間,某電器商場(chǎng)為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每消費(fèi)滿8千元,可減8百元.方案二:消費(fèi)金額超過8千元(含8千元),可抽取小球三次,其規(guī)則是依次從裝有2個(gè)紅色小球、2個(gè)黃色小球的一號(hào)箱子,裝有2個(gè)紅色小球、2個(gè)黃色小球的二號(hào)箱子,裝有1個(gè)紅色小球、3個(gè)黃色小球的三號(hào)箱子各抽一個(gè)小球(這些小球除顏色外完全相同),其優(yōu)惠情況為:若抽出3個(gè)紅色小球則打6折;若抽出2個(gè)紅色小球則打7折;若抽出1個(gè)紅色小球則打8折;若沒有抽出紅色小球則不打折.(1)若有兩名顧客恰好消費(fèi)8千元,他們都選中第二方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;(2)若你朋友在該商場(chǎng)消費(fèi)了1萬元,請(qǐng)用所學(xué)知識(shí)幫助你朋友分析一下應(yīng)選擇哪種付款方案.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)向量的運(yùn)算法則得到,帶入化簡(jiǎn)得到答案.【詳解】在長(zhǎng)方體中,易知,所以.故選:D.2、B【解析】利用復(fù)合函數(shù)求導(dǎo)法則即可求導(dǎo).【詳解】,故選:B.3、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.4、B【解析】由等差數(shù)列的求和公式與等差數(shù)列的性質(zhì)求解即可【詳解】奇數(shù)項(xiàng)共有項(xiàng),其和為,∴偶數(shù)項(xiàng)共有n項(xiàng),其和為,∴故選:B5、D【解析】設(shè)出過點(diǎn)與拋物線C只有一個(gè)公共點(diǎn)且斜率存在的直線方程,再與的方程聯(lián)立借助判別式計(jì)算、判斷作答.【詳解】拋物線的對(duì)稱軸為y軸,直線過點(diǎn)P且與y軸平行,它與拋物線C只有一個(gè)公共點(diǎn),設(shè)過點(diǎn)與拋物線C只有一個(gè)公共點(diǎn)且斜率存在的直線方程為:,由消去y并整理得:,則,解得或,因此,過點(diǎn)與拋物線C相切的直線有兩條,相交且只有一個(gè)公共點(diǎn)的直線有一條,所以過點(diǎn)與拋物線C有且只有一個(gè)交點(diǎn)的直線有3條.故選:D6、C【解析】建立空間直角坐標(biāo)系,分別得到,然后根據(jù)空間向量夾角公式計(jì)算即可.【詳解】以過點(diǎn)且垂直于平面的直線為軸,直線,分別為軸,軸,建立如圖所示的空間直角坐標(biāo)系.不妨設(shè),則根據(jù)題意可得,,,,所以,,設(shè)異面直線與所成角為,則.故選:C.7、D【解析】利用已知條件,結(jié)合期望公式求解即可【詳解】解:由題意可知:故選:D8、D【解析】直接利用向量的坐標(biāo)運(yùn)算求解即可【詳解】因?yàn)?,所以,故選:D9、B【解析】根據(jù)拋物線定義,轉(zhuǎn)化,要使有最小值,只需最大,即直線與拋物線相切,聯(lián)立直線方程與拋物線方程,求出斜率,然后求出點(diǎn)坐標(biāo),即可求解.【詳解】由題知,拋物線的準(zhǔn)線方程為,,過P作垂直于準(zhǔn)線于,連接,由拋物線定義知.由正弦函數(shù)知,要使最小值,即最小,即最大,即直線斜率最大,即直線與拋物線相切.設(shè)所在的直線方程為:,聯(lián)立拋物線方程:,整理得:則,解得即,解得,代入得或,再利用焦半徑公式得故選:B.關(guān)鍵點(diǎn)睛:本題考查拋物線的性質(zhì),直線與拋物線的位置關(guān)系,解題的關(guān)鍵是要將取最小值轉(zhuǎn)化為直線斜率最大,再轉(zhuǎn)化為拋物線的切線,考查學(xué)生的轉(zhuǎn)化思想與運(yùn)算求解能力,屬于中檔題.10、D【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程與漸近線的關(guān)系即可求解.【詳解】當(dāng)雙曲線焦點(diǎn)在x軸上時(shí),漸近線為,故離心率為;當(dāng)雙曲線焦點(diǎn)在y軸上時(shí),漸近線為,故離心率為;故選:D.11、A【解析】將兩圓的方程相減,即可求兩圓相交弦所在直線的方程.【詳解】設(shè),因?yàn)閳A:①和圓:②交于A,B兩點(diǎn)所以由①-②得:,即,故坐標(biāo)滿足方程,又過AB的直線唯一確定,即直線的方程為.故選:A12、A【解析】由a1=3,,利用遞推思想,求出數(shù)列的前11項(xiàng),推導(dǎo)出數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,由此能求出a2022【詳解】解:∵數(shù)列{an}滿足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴數(shù)列{an}從第6項(xiàng)起是周期為3的周期數(shù)列,∵2022=5+672×3+1,∴a2022=a6=4故選:A二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】由等比數(shù)列的性質(zhì)可得,再利用對(duì)數(shù)的性質(zhì)可得結(jié)果【詳解】解:因?yàn)榈缺葦?shù)列的各項(xiàng)均為正數(shù),且,所以,所以故答案為:1014、(答案不唯一)【解析】由條件確定該等比數(shù)列的首項(xiàng)的可能值,由此確定該數(shù)列的通項(xiàng)公式.【詳解】設(shè)數(shù)列的公比為,則,由已知可得,∴,所以,故可取,故滿足條件的等比數(shù)列的通項(xiàng)公式可能為,故答案為:(答案不唯一)15、①.②.【解析】根據(jù)題意,,進(jìn)而得,,故最小距離為;進(jìn)而建立坐標(biāo)系,得拋物線方程為,當(dāng)杯內(nèi)放入一個(gè)小的玻璃球,要使球觸及酒杯底部,此時(shí)設(shè)玻璃球軸截面所在圓的方程為,進(jìn)而只需滿足拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立,再根據(jù)幾何關(guān)系求解即可.【詳解】因?yàn)楸诜乓粋€(gè)表面積為的玻璃球,所以球的半徑為,又因?yàn)楸趯抍m,所以如圖1所示,有,所以,所以,所以,又因?yàn)楸?cm,即故最小距離為如圖1所示,建立直角坐標(biāo)系,易知,設(shè)拋物線的方程為,所以將代入得,故拋物線方程為,當(dāng)杯內(nèi)放入一個(gè)小的玻璃球,要使球觸及酒杯底部,如圖2,設(shè)玻璃球軸截面所在圓的方程為,依題意,需滿足拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立,即,則有恒成立,解得,可得.所以玻璃球的半徑的取值范圍為.故答案為:;【點(diǎn)睛】本題考查拋物線的應(yīng)用,考查數(shù)學(xué)建模能力,運(yùn)算求解能力,是中檔題.本題第二問解題的關(guān)鍵在于設(shè)出球觸及酒杯底部的軸截面圓的方程,進(jìn)而將問題轉(zhuǎn)化為拋物線上的點(diǎn)到圓心的距離大于等于半徑恒成立求解.16、【解析】根據(jù)判斷出四邊形為平行四邊形,由此求得圓的方程以及的長(zhǎng),進(jìn)而判斷出點(diǎn)在圓上,根據(jù)圓與圓的位置關(guān)系,求得的取值范圍.【詳解】四邊形ONO1M為平行四邊形,即ON=MO1=r=1,所以圓的方程為,且ON為△ABM的中位線AM=2ON=2AO1=3,故點(diǎn)A在以O(shè)1為圓心,3為半徑的圓上,該圓的方程為:,故與x2+y2=1在第一象限有交點(diǎn),即2<a<4,由,解得,故a的取值范圍為(,4).故答案為:【點(diǎn)睛】本小題主要考查圓與圓的位置關(guān)系,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用雙曲線定義,根據(jù)點(diǎn)到一個(gè)焦點(diǎn)的距離求點(diǎn)到另一個(gè)焦點(diǎn)的距離即可;(2)先根據(jù)定義得到,兩邊平方求得,即證,,再計(jì)算直角三角形面積即可.【小問1詳解】是雙曲線的兩個(gè)焦點(diǎn),則,點(diǎn)M到它的一個(gè)焦點(diǎn)的距離等于10,設(shè)點(diǎn)到另一個(gè)焦點(diǎn)的距離為,則由雙曲線定義可知,,解得或(舍去)即點(diǎn)到另一個(gè)焦點(diǎn)的距離為;【小問2詳解】P是雙曲線左支上的點(diǎn),則,則,而,所以,即,所以為直角三角形,,所以.18、(1)證明見解析;(2)存在,.【解析】(1)建立空間直角坐標(biāo)系,求出平面的法向量和直線的單位向量,從而可證明線面平行.(2)令,,設(shè),求出,結(jié)合已知條件可列出關(guān)于的方程,從而可求出的值.【詳解】證明:過作于點(diǎn),則,以為原點(diǎn),,,所在的直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系則,,,

,,,∵為的中點(diǎn).∴.則,,,設(shè)平面的法向量為,則令,則,,∴.∴,即,又平面.∴平面解:令,,設(shè),∴.∴,∴

.由知,平面的法向量為.∵直線與平面所成角的正弦值為,∴,化簡(jiǎn)得,即,∵,∴,故【點(diǎn)睛】本題考查了利用空間向量證明線面平行,考查了平面法向量的求解,屬于中檔題.19、(1)證明見解析;(2)證明見解析.【解析】(1)根據(jù)題意,利用中位線定理和線段成比例,先證明,進(jìn)而證明問題;(2)先證明平面,平面,進(jìn)而證明點(diǎn)P在兩個(gè)平面的交線上,然后證得結(jié)論.【小問1詳解】連接分別是的中點(diǎn),.在中,.所以四點(diǎn)共面.【小問2詳解】,所以,又平面平面,同理:,平面平面,為平面與平面的一個(gè)公共點(diǎn).又平面平面,即三點(diǎn)共線.20、(1);(2)347.【解析】(1)設(shè)等差數(shù)列的公差為,解方程組即得解;(2)先求出,再分組求和得解.【詳解】解:(1)設(shè)等差數(shù)列的公差為,則解得所以(2)由題意,,所以所以的前8項(xiàng)和為21、(1);(2).【解析】(1)先設(shè)等差數(shù)列的公差為,由題中條件,列出方程求出首項(xiàng)和公差,即可得出通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果,得到,再由等比數(shù)列的求和公式,即可得出結(jié)果.【詳解】(1)設(shè)等差數(shù)列的公差為,因?yàn)?,,所以,解得,所以;?)由(1)可得,,即數(shù)列為等比數(shù)列,所以數(shù)列的前n項(xiàng)和.22、(1)(2)選擇方案二更劃算【解析】(1)要使方案二比方案一優(yōu)惠,則需要抽出至少一個(gè)紅球,求出沒有抽出紅色小球的概率,再根據(jù)對(duì)立事件的概率公式即可得出答案;(2)若

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論