版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省常州市常州中學2024屆數(shù)學高二上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,M為OA的中點,以為基底,,則實數(shù)組等于()A. B.C. D.2.已知橢圓與橢圓,則下列結論正確的是()A.長軸長相等 B.短軸長相等C.焦距相等 D.離心率相等3.橢圓的焦點坐標是()A.(±4,0) B.(0,±4)C.(±5,0) D.(0,±5)4.設斜率為2的直線l過拋物線()的焦點F,且和y軸交于點A,若(O為坐標原點)的面積為4,則拋物線方程為()A. B.C. D.5.已知平面,的法向量分別為,,且,則()A. B.C. D.6.已知點,,若直線過點且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.7.如圖,用隨機模擬方法近似估計在邊長為e(e為自然對數(shù)的底數(shù))的正方形中陰影部分的面積,先產(chǎn)生兩組區(qū)間上的隨機數(shù)和,因此得到1000個點對,再統(tǒng)計出落在該陰影部分內的點數(shù)為260個,則此陰影部分的面積約為()A.0.70 B.1.04C.1.86 D.1.928.甲、乙、丙、丁共4名同學進行黨史知識比賽,決出第1名到第4名的名次(名次無重復),其中前2名將獲得參加市級比賽的資格,甲和乙去詢問成績,回答者對甲說:“很遺憾,你沒有獲得參加市級比賽的資格.”對乙說:“你當然不會是最差的.”從這兩個回答分析,4人的排名有()種不同情況.A.6 B.8C.10 D.129.已知,則下列三個數(shù),,()A.都不大于-4 B.至少有一個不大于-4C.都不小于-4 D.至少有一個不小于-410.若函數(shù)有兩個不同的極值點,則實數(shù)的取值范圍是()A. B.C. D.11.拋物線y2=4x的焦點坐標是A.(0,2) B.(0,1)C.(2,0) D.(1,0)12.設正數(shù)數(shù)列的前項和為,數(shù)列的前項積為,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若數(shù)列的前n項和,則其通項公式________14.已知拋物線:,若直線與拋物線C相交于M,N兩點,則_______________.15.橢圓C:的左、右焦點分別為,,點A在橢圓上,,直線交橢圓于點B,,則橢圓的離心率為______16.已知圓的半徑為3,,為該圓的兩條切線,為切點,則的最小值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)當,時,求中含項的系數(shù);(2)用、表示,寫出推理過程18.(12分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.點E在PC上.(1)求證:平面BDE⊥平面PAC;(2)若E為PC的中點,求直線PC與平面AED所成的角的正弦值.19.(12分)已知函數(shù),當時,有極大值3(1)求的值;(2)求函數(shù)的極小值20.(12分)已知數(shù)列的前n項和為,且(1)求證:數(shù)列為等比數(shù)列;(2)記,求數(shù)列的前n項和為21.(12分)已知函數(shù).(1)當時,求曲線在點處的切線方程;(2)當時,設,求函數(shù)的單調區(qū)間.22.(10分)設橢圓的焦距為,原點到經(jīng)過兩點的直線的距離為.(1)求橢圓的離心率;(2)如圖所示,是圓的一條直徑,若橢圓經(jīng)過兩點,求橢圓的標準方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)空間向量減法的幾何意義進行求解即可.【詳解】,所以實數(shù)組故選:B2、C【解析】利用,可得且,即可得出結論【詳解】∵,且,橢圓與橢圓的關系是有相等的焦距故選:C3、A【解析】根據(jù)橢圓的方程求得的值,進而求得橢圓的焦點坐標,得到答案.【詳解】由橢圓,可得,則,所以橢圓的焦點坐標為和.故選:A.4、B【解析】根據(jù)拋物線的方程寫出焦點坐標,求出直線的方程、點的坐標,最后根據(jù)三角形面積公式進行求解即可.【詳解】拋物線的焦點的坐標為,所以直線的方程為:,令,解得,因此點的坐標為:,因為面積為4,所以有,即,,因此拋物線的方程為.故選:B.5、D【解析】由題得,解方程即得解.【詳解】解:因為,所以所以,所以,所以.故選:D6、B【解析】直接利用兩點間的坐標公式和直線的斜率的關系求出結果【詳解】解:直線過點且斜率為,與連接兩點,的線段有公共點,由圖,可知,,當時,直線與線段有交點故選:B7、D【解析】根據(jù)幾何概型的概率公式即可直接求出答案.【詳解】易知,根據(jù)幾何概型的概率公式,得,所以.故選:D.8、C【解析】由題可知甲不在前2名,乙不在最后一名,然后分類討論可得答案.【詳解】若甲是最后一名,則其他三人沒有限制,4人排名即為,若甲是第三名,4人的排名為,所以4人的排名有種情況.故選:C9、B【解析】利用反證法設,,都大于,結合基本不等式即可得出結論.【詳解】設,,都大于,則,由于,故,利用基本不等式可得,當且僅當時等號成立,這與假設所得結論矛盾,故假設不成立,故下列三個數(shù),,至少有一個不大于,故選:B.10、D【解析】計算,然后等價于在(0,+∞)由2個不同的實數(shù)根,然后計算即可.【詳解】的定義域是(0,+∞),,若函數(shù)有兩個不同的極值點,則在(0,+∞)由2個不同的實數(shù)根,故,解得:,故選:D.【點睛】本題考查根據(jù)函數(shù)極值點個數(shù)求參,考查計算能力以及思維轉變能力,屬基礎題.11、D【解析】的焦點坐標為,故選D.【考點】拋物線的性質【名師點睛】本題考查拋物線的定義.解析幾何是中學數(shù)學的一個重要分支,圓錐曲線是解析幾何的重要內容,它們的定義、標準方程、簡單幾何性質是我們要重點掌握的內容,一定要熟記掌握12、B【解析】當可求得;當時,可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式可推導得到,由求得后,利用可求得結果.【詳解】當時,,解得:;當時,由得:,即,,數(shù)列是以為首項,為公差的等差數(shù)列,,解得:,,經(jīng)檢驗:滿足,,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由和計算【詳解】由題意,時,,所以故答案為:14、8【解析】直線方程代入拋物線方程,應用韋達定理根據(jù)弦長公式求弦長【詳解】設,由得,所以,,故答案為:815、(也可以)【解析】可以利用條件三角形為等腰直角三角形,設出邊長,找到邊長與之間等量關系,然后把等量關系帶入到勾股定理表達的等式中,即可求解離心率.【詳解】由題意知三角形為等腰直角三角形,設,則,解得,,在三角形中,由勾股定理得,所以,故答案為:(也可以)16、【解析】設(),,則,,,根據(jù)數(shù)量積的定義和余弦的二倍角公式結合基本不等式即可求解詳解】如圖所示,設(),,則,,,,當且僅當即時等號成立,∴的最小值是.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2),過程見解析【解析】(1)寫出函數(shù)的解析式,利用二項式定理可求得函數(shù)中含項的系數(shù);(2)利用錯位相減法化簡函數(shù)的解析式,求出解析式中含項的系數(shù),再結合組合數(shù)公式化簡可得結果.【小問1詳解】解:當,時,,的展開式通項為,此時,函數(shù)中含項的系數(shù)之和為.【小問2詳解】解:因為,①則,②①②得,所以,,而為中含項的系數(shù),而函數(shù)中含項的系數(shù)也可視為中含項的系數(shù),故,且,故.18、(1)證明見解析;(2)【解析】(1)根據(jù)題意可判斷出ABCD是正方形,從而可得,再根據(jù),由線面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可證出;(2)由、、兩兩垂直可建立空間直角坐標系,利用向量法即可求出直線PC與平面AED所成的角的正弦值.【小問1詳解】因為PA⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小問2詳解】由題可知、、兩兩垂直,建系如圖,,0,,,2,,,0,,,2,,,1,,,,,,1,,,2,,設平面的一個法向量為,則,,即,取,0,,所以直線與平面所成的角的正弦值為19、(1);(2)0【解析】(1)由題意得,則可得到關于實數(shù)的方程組,求解方程組,即可求得的值;(2)結合(1)中的值得出函數(shù)的解析式,即可利用導數(shù)求得函數(shù)的極小值.【詳解】(1),當時,有極大值3,所以,解得,經(jīng)檢驗,滿足題意,所以;(2)由(1)得,則,令,得或,列表得極小值極大值易知是函數(shù)的極小值點,所以當時,函數(shù)有極小值0【點睛】本題主要考查了函數(shù)的極值的概念,以及利用導數(shù)求解函數(shù)的極值,考查了學生對極值概念的理解與運算求解能力.20、(1)證明見解析;(2).【解析】(1)由已知得,當時,兩式作差整理得,根據(jù)等比數(shù)列的定義可得證;(2)由(1)求得,,再運用錯位相減法可求得答案.【小問1詳解】證明:因為,……①,所以當時,,當時……②,則①-②可得,所以,因為,所以數(shù)列是以2為首項,2為公比的等比數(shù)列【小問2詳解】解:由(1)知,即,因為所以,則……①,①得……②,①-②得,所以.21、(1);(2)增區(qū)間為,減區(qū)間為.【解析】(1)根據(jù)導數(shù)的幾何意義即可求解;(2)求g(x)導數(shù),導數(shù)同分分解因式,討論其正負即可判斷g(x)的單調性.【小問1詳解】當時,,則,又,設所求切線的斜率為,則,則切線的方程為:,化簡即得切線的方程為:.【小問2詳解】,其定義域為,,∵,∴ax+1>0,∴當時,;當時,.的增區(qū)間為,減區(qū)間為.22、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版投資股權轉讓與旅游產(chǎn)業(yè)發(fā)展合作協(xié)議3篇
- 二零二五版學生入學協(xié)議范本全面保障入學權益3篇
- 面包磚鋪設施工方案
- 青島室內綠化施工方案
- 二零二五年度二手車買賣合同附帶車輛回收服務協(xié)議3篇
- 遼寧電鍍線施工方案
- 二零二五年度高品質通信工程電桿管材料購銷及配送合同9篇
- 二零二五年度跨區(qū)域土地轉讓協(xié)議合同3篇
- 二零二五版石材雕刻業(yè)務合作協(xié)議書3篇
- 二零二五年度公司向個人提供專利權收益權借款合同模板4篇
- 廣東省茂名市電白區(qū)2024-2025學年七年級上學期期末質量監(jiān)測生物學試卷(含答案)
- 2024版?zhèn)€人私有房屋購買合同
- 2024爆炸物運輸安全保障協(xié)議版B版
- 2025年度軍人軍事秘密保護保密協(xié)議與信息安全風險評估合同3篇
- 《食品與食品》課件
- 讀書分享會《白夜行》
- 中國服裝零售行業(yè)發(fā)展環(huán)境、市場運行格局及前景研究報告-智研咨詢(2025版)
- 光伏工程施工組織設計
- 汽車車身密封條設計指南
- DB4101-T 121-2024 類家庭社會工作服務規(guī)范
- 化學纖維的鑒別與測試方法考核試卷
評論
0/150
提交評論