江蘇省連云港市贛榆縣海頭高級中學2023-2024學年高二數(shù)學第一學期期末經典試題含解析_第1頁
江蘇省連云港市贛榆縣海頭高級中學2023-2024學年高二數(shù)學第一學期期末經典試題含解析_第2頁
江蘇省連云港市贛榆縣海頭高級中學2023-2024學年高二數(shù)學第一學期期末經典試題含解析_第3頁
江蘇省連云港市贛榆縣海頭高級中學2023-2024學年高二數(shù)學第一學期期末經典試題含解析_第4頁
江蘇省連云港市贛榆縣海頭高級中學2023-2024學年高二數(shù)學第一學期期末經典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省連云港市贛榆縣海頭高級中學2023-2024學年高二數(shù)學第一學期期末經典試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列說法中正確的是()A.棱柱的側面可以是三角形B.棱臺的所有側棱延長后交于一點C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長都相等2.設,直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.給出如下四個命題正確的是()①方程表示的圖形是圓;②橢圓的離心率;③拋物線的準線方程是;④雙曲線的漸近線方程是A.③ B.①③C.①④ D.②③④4.甲、乙、丙、丁共4名同學進行黨史知識比賽,決出第1名到第4名的名次(名次無重復),其中前2名將獲得參加市級比賽的資格,甲和乙去詢問成績,回答者對甲說:“很遺憾,你沒有獲得參加市級比賽的資格.”對乙說:“你當然不會是最差的.”從這兩個回答分析,4人的排名有()種不同情況.A.6 B.8C.10 D.125.設分別為圓和橢圓上的點,則兩點間的最大距離是A. B.C. D.6.已知A為拋物線C:y2=2px(p>0)上一點,點A到C的焦點的距離為12,到y(tǒng)軸的距離為9,則p=()A.2 B.3C.6 D.97.已知經過兩點(5,m)和(m,8)的直線的斜率等于1,則m的值為()A.5 B.8C. D.78.①直線在軸上的截距為;②直線的傾斜角為;③直線必過定點;④兩條平行直線與間的距離為.以上四個命題中正確的命題個數(shù)為()A. B.C. D.9.設是空間一定點,為空間內任一非零向量,滿足條件的點構成的圖形是()A.圓 B.直線C.平面 D.線段10.函數(shù)在單調遞增的一個必要不充分條件是()A. B.C. D.11.已知函數(shù)的導函數(shù)為,若的圖象如圖所示,則函數(shù)的圖象可能是()A. B.C. D.12.已知E、F分別為橢圓的左、右焦點,傾斜角為的直線l過點E,且與橢圓交于A,B兩點,則的周長為A.10 B.12C.16 D.20二、填空題:本題共4小題,每小題5分,共20分。13.點為橢圓上的一動點,則點到直線的距離的最小值為___________.14.若函數(shù)是上的增函數(shù),則實數(shù)的取值范圍是__________.15.若直線過圓的圓心,則實數(shù)a的值為_________.16.已知數(shù)列滿足,則其通項公式________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為零的等差數(shù)列的前項和為,,,成等比數(shù)列且滿足________.請在①;②;③,這三個條件中任選一個補充在上面題干中,并回答以下問題.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.18.(12分)已知圓C的圓心在y軸上,且過點,(1)求圓C的方程;(2)已知圓C上存在點M,使得三角形MAB的面積為,求點M的坐標19.(12分)已知雙曲線C:(a>0,b>0)的離心率為,實軸長為2.(1)求雙曲線的焦點到漸近線的距離;(2)若直線y=x+m被雙曲線C截得的弦長為,求m的值.20.(12分)已知橢圓C:的長軸長為4,離心率e是方程的一根(1)求橢圓C的方程;(2)已知O是坐標原點,斜率為k的直線l經過點,已知直線l與橢圓C相交于點A,B,求面積的最大值21.(12分)已知數(shù)列滿足,(1)證明是等比數(shù)列,(2)求數(shù)列的前項和22.(10分)已知拋物線:()的焦點為,點在上,點在的內側,且的最小值為(1)求的方程;(2)過點的直線與拋物線交于不同的兩點,,直線,(為坐標原點)分別交直線于點,記直線,,的斜率分別為,,,若,求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)棱柱、棱臺、球、正棱錐結構特征依次判斷選項即可.【詳解】棱柱的側面都是平行四邊形,A不正確;棱臺是由對應的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長并不是都相等,應該為正棱錐的側棱長都相等,所以D不正確.故選:B.2、A【解析】由可求得實數(shù)的值,再利用充分條件、必要條件的定義判斷可得出結論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.3、A【解析】對選項①,根據(jù)圓一般方程求解即可判斷①錯誤,對選項②,求出橢圓離心率即可判斷②錯誤,對③,求出拋物線漸近線即可判斷③正確,對④,求出雙曲線漸近線方程即可判斷④錯誤?!驹斀狻繉τ冖龠x項,,,故①錯誤;對于②選項,由題知,所以,所以離心率,故②錯誤;對于③選項,拋物線化為標準形式得拋物線,故準線方程是,故③正確;對于④選項,雙曲線化為標準形式得,所以,焦點在軸上,故漸近線方程是,故④錯誤.故選:A4、C【解析】由題可知甲不在前2名,乙不在最后一名,然后分類討論可得答案.【詳解】若甲是最后一名,則其他三人沒有限制,4人排名即為,若甲是第三名,4人的排名為,所以4人的排名有種情況.故選:C5、D【解析】轉化為圓心到橢圓上點的距離的最大值加(半徑).【詳解】設,圓心為,則,當時,取到最大值,∴最大值為故選:D.【點睛】本題考查圓上點與橢圓上點的距離的最值問題,解題關鍵是圓上的點轉化為圓心,利用圓心到動點距離的最值加(或減)半徑得出結論6、C【解析】利用拋物線的定義建立方程即可得到答案.【詳解】設拋物線的焦點為F,由拋物線的定義知,即,解得.故選:C.【點晴】本題主要考查利用拋物線的定義計算焦半徑,考查學生轉化與化歸思想,是一道容易題.7、C【解析】根據(jù)斜率的公式直接求解即可.【詳解】由題可知,,解得.故選:C【點睛】本題主要考查了兩點間斜率的計算公式,屬于基礎題.8、B【解析】由直線方程的性質依次判斷各命題即可得出結果.【詳解】對于①,直線,令,則,直線在軸上的截距為-,則①錯誤;對于②,直線的斜率為,傾斜角為,則②正確;對于③直線,由點斜式方程可知直線必過定點,則③正確;對于④,兩條平行直線與間的距離為,則④錯誤.故選:B.9、C【解析】根據(jù)法向量的定義可判斷出點所構成的圖形.【詳解】是空間一定點,為空間內任一非零向量,滿足條件,所以,構成的圖形是經過點,且以為法向量的平面.故選:C.【點睛】本題考查空間中動點的軌跡,考查了法向量定義的理解,屬于基礎題.10、D【解析】求出導函數(shù),由于函數(shù)在區(qū)間單調遞增,可得在區(qū)間上恒成立,求出的范圍,再根據(jù)充分必要條件的定義即可判斷得解.【詳解】由題得,函數(shù)在區(qū)間單調遞增,在區(qū)間上恒成立,而在區(qū)間上單調遞減,選項中只有是的必要不充分條件.選項AC是的充分不必要條件,選項B是充要條件.故選:D11、D【解析】根據(jù)導函數(shù)大于,原函數(shù)單調遞增;導函數(shù)小于,原函數(shù)單調遞減;即可得出正確答案.【詳解】由導函數(shù)得圖象可得:時,,所以單調遞減,排除選項A、B,當時,先正后負,所以在先增后減,因選項C是先減后增再減,故排除選項C,故選:D.12、D【解析】利用橢圓的定義即可得到結果【詳解】橢圓,可得,三角形的周長,,所以:周長,由橢圓的第一定義,,所以,周長故選D【點睛】本題考查橢圓簡單性質的應用,橢圓的定義的應用,三角形的周長的求法,屬于基本知識的考查二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設與平行的直線與相切,求解出此時的方程,則點到直線距離的最大值可根據(jù)平行直線間的距離公式求解出.【詳解】設與平行的直線,當與橢圓相切時有:,所以,所以,所以,由題意取時,到直線的距離較小此時與(即)的距離為,所以點到直線距離的最小值為,故答案為:.14、【解析】由題意知在上恒成立,從而結合一元二次不等式恒成立問題,可列出關于的不等式,進而可求其取值范圍.【詳解】解:由題意知,知在上恒成立,則只需,解得.故答案為:.【點睛】本題考查了不等式恒成立問題,考查了運用導數(shù)探究函數(shù)的單調性.一般地,由增函數(shù)可得導數(shù)不小于零,由減函數(shù)可得導數(shù)不大于零.對于一元二次不等式在上恒成立問題,如若在上恒成立,可得;若在上恒成立,可得.15、【解析】根據(jù)圓的求得圓心坐標,將圓心坐標代入直線方程,即可求解.【詳解】由題意,圓,可得圓心為,因為圓心為在直線上,可得,解得.故答案:.16、【解析】利用累加法即可求出數(shù)列的通項公式.【詳解】因為,所以,所以,,,…,,把以上個式子相加,得,即,所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)【解析】(1)首先由,,成等比數(shù)列,求出,再由①或②或③求出數(shù)列的首項和公差,即可求得的通項公式;(2)求得的通項公式,結合裂項相消法求得.【小問1詳解】設等差數(shù)列的公差為,由,,成等比數(shù)列,可得,即,∵,故,選①:由,可得,解得,所以數(shù)列的通項公式為選②:由,可得,即,所以,解得,所以;選③:由,可得,即,所以,解得,所以;【小問2詳解】由(1)可得,所以.18、(1);(2)或.【解析】(1)兩點式求AB所在直線的斜率,結合點坐標求AB的垂直平分線,根據(jù)已知確定圓心、半徑即可得圓C的方程;(2)求AB所在直線方程,幾何關系求弦長,由三角形面積求點線距離,設M所在直線為,由點線距離公式列方程求參數(shù),進而聯(lián)立直線與圓C求M的坐標【小問1詳解】由題意知,AB所在直線的斜率為,又,中點為,所以線段AB的垂直平分線為,即,聯(lián)立,得,半徑,所以圓C的方程為.【小問2詳解】由題意,AB所在直線方程為,即,圓心到直線AB的距離為,故,因為三角形MAB的面積為,則點M到直線AB的距離為,設點M所在直線方程為,所以,所以或,當時,聯(lián)立得:或,當時,聯(lián)立,無解;所以或19、(1)(2)【解析】(1)根據(jù)已知計算雙曲線的基本量,得雙曲線焦點坐標及漸近線方程,再用點到直線距離公式得解.(2)直線方程代入雙曲線方程,得到關于的一元二次方程,運用韋達定理弦長公式列方程得解.【小問1詳解】雙曲線離心率為,實軸長為2,,,解得,,,所求雙曲線C的方程為;∴雙曲線C的焦點坐標為,漸近線方程為,即為,∴雙曲線焦點到漸近線的距離為.【小問2詳解】設,,聯(lián)立,,,,,,解得20、(1);(2).【解析】(1)待定系數(shù)法求橢圓的方程;(2)設直線的方程為,,,用“設而不求法”表示出三角形OAB的面積.令轉化為關于t的函數(shù),利用函數(shù)求最值.【詳解】(1)依題意得:,∴.方程的根為或.∵橢圓的離心率,∴,∴∴∴橢圓方程為.(2)設直線的方程為,,由,得,則,點到直線的距離為,.令,則..∵在單調遞增,∴時.有最小值3.此時有最大值.∴面積的最大值為.21、(1)見解析;(2)【解析】(1)利用定義法證明是一個與n無關的非零常數(shù),從而得出結論;(2)由(1)求出,利用分組求和法求【詳解】(1)由得,所以,所以是首項為,公比為的等比數(shù)列,,所以,(2)由(1)知的通項公式為;則所以【點睛】本題主要考查等比數(shù)列的證明以及分組求和法,屬于基礎題22、(1)(2)【解析】(1)先求出拋物線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論