版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖北省武漢市江夏一中2024屆數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的離心率為,則其漸近線方程為A.y=±2x B.y=C. D.2.圓與圓的位置關(guān)系為()A.內(nèi)切 B.相交C.外切 D.外離3.在中,角A,B,C的對邊分別為a,b,c.若,,則的形狀為()A.直角三角形 B.等邊三角形C.等腰直角三角形 D.等腰或直角三角形4.已知雙曲線,過原點作一條傾斜角為的直線分別交雙曲線左、右兩支于、兩點,以線段為直徑的圓過右焦點,則雙曲線的離心率為().A. B.C. D.5.已知雙曲線,則“”是“雙曲線的焦距大于4”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知等比數(shù)列的前項和為,則關(guān)于的方程的解的個數(shù)為()A.0 B.1C.無數(shù)個 D.0或無數(shù)個7.已知全集,集合,,則()A. B.C. D.8.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.9.已知直線與直線平行,則實數(shù)a值為()A.1 B.C.1或 D.10.已知圓的方程為,圓的方程為,其中.那么這兩個圓的位置關(guān)系不可能為()A.外離 B.外切C.內(nèi)含 D.內(nèi)切11.已知點到直線的距離為1,則m的值為()A.或 B.或15C.5或 D.5或1512.下列推理中屬于歸納推理且結(jié)論正確的是()A.由,求出,,,…,推斷:數(shù)列的前項和B.由滿足對都成立,推斷:為奇函數(shù)C.由半徑為的圓的面積,推斷單位圓的面積D.由,,,…,推斷:對一切,二、填空題:本題共4小題,每小題5分,共20分。13.平面直角坐標(biāo)系內(nèi)動點M()與定點F(4,0)的距離和M到定直線的距離之比是常數(shù),則動點M的軌跡是___________14.設(shè)雙曲線的焦點為,點為上一點,,則為_____.15.已知曲線在處的切線方程為,則________16.已知函數(shù)f(x)=ex-2x+a有零點,則a的取值范圍是___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD是矩形,M是PA的中點,N是BC的中點,平面ABCD,且,(1)求證:∥平面PCD;(2)求平面MBC與平面ABCD夾角的余弦值18.(12分)已知函數(shù)(1)當(dāng)時,求的單調(diào)遞減區(qū)間;(2)若關(guān)于的方程恰有兩個不等實根,求實數(shù)的取值范圍19.(12分)已知橢圓,點在上,,且(1)求出直線所過定點的坐標(biāo);(不需要證明)(2)過A點作的垂線,垂足為,是否存在點,使得為定值?若存在,求出的值;若不存在,說明理由.20.(12分)已知雙曲線的左,右焦點為,離心率為.(1)求雙曲線C的漸近線方程;(2)過作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點,若,求k的值.21.(12分)如圖,三棱錐中,,,,,,點是PA的中點,點D是AC的中點,點N在PB上,且.(1)證明:平面CMN;(2)求平面MNC與平面ABC所成角的余弦值.22.(10分)已知在數(shù)列中,,且.(1)求,,并證明數(shù)列是等比數(shù)列;(2)求的通項公式及前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】雙曲線的離心率為,漸進性方程為,計算得,故漸進性方程為.【考點定位】本小題考查了離心率和漸近線等雙曲線的性質(zhì).2、C【解析】將圓的一般方程化為標(biāo)準(zhǔn)方程,根據(jù)圓心距和半徑的關(guān)系,判斷兩圓的位置關(guān)系.【詳解】圓的標(biāo)準(zhǔn)方程為,圓的標(biāo)準(zhǔn)方程為,兩圓的圓心距為,即圓心距等于兩圓半徑之和,故兩圓外切,故選:C.3、B【解析】直接利用正弦定理以及已知條件,求出、、的關(guān)系,即可判斷三角形的形狀【詳解】解:在中,已知,,,分別為角,,的對邊),由正弦定理可知:,所以,解得,所以為等邊三角形故選:【點睛】本題考查三角形的形狀的判斷,正弦定理的應(yīng)用,考查計算能力,屬于基礎(chǔ)題4、A【解析】設(shè)雙曲線的左焦點為,連接、,求得、,利用雙曲線的定義可得出關(guān)于、的等式,即可求得雙曲線的離心率.【詳解】設(shè)雙曲線的左焦點為,連接、,如下圖所示:由題意可知,點為的中點,也為的中點,且,則四邊形為矩形,故,由已知可知,由直角三角形的性質(zhì)可得,故為等邊三角形,故,所以,,由雙曲線的定義可得,所以,.故選:A.5、A【解析】先找出“雙曲線的焦距大于4”的充要條件,再進行判斷即可【詳解】若的焦距,則;若,則故選:A6、D【解析】利用等比數(shù)列的求和公式討論公比的取值即得.【詳解】設(shè)等比數(shù)列的公比為,當(dāng)時,,因為,所以無解,即方程的解的個數(shù)為0,當(dāng)時,,所以時,方程有無數(shù)個偶數(shù)解,當(dāng)時,方程無解,綜上,關(guān)于的方程的解的個數(shù)為0或無數(shù)個.故選:D.7、A【解析】先求,然后求.【詳解】,,.故選:A8、B【解析】基本事件總數(shù),再利用列舉法求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個數(shù),由此能求出點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點數(shù)之和,基本事件總數(shù),點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個,則點數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B9、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當(dāng)時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A10、C【解析】求出圓心距的取值范圍,然后利用圓心距與半徑的和差關(guān)系判斷.【詳解】由兩圓的標(biāo)準(zhǔn)方程可得,,,;則,所以兩圓不可能內(nèi)含.故選:C.11、D【解析】利用點到直線距離公式即可得出.【詳解】解:點到直線的距離為1,解得:m=15或5故選:D.12、A【解析】根據(jù)歸納推理是由特殊到一般,推導(dǎo)結(jié)論可得結(jié)果.【詳解】對于A,由,求出,,,…,推斷:數(shù)列的前項和,是由特殊推導(dǎo)出一般性的結(jié)論,且,故A正確;B和C屬于演繹推理,故不正確;對于D,屬于歸納推理,但時,結(jié)論不正確,故D不正確.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)直接法,即可求軌跡.【詳解】解:動點與定點的距離和它到定直線的距離之比是常數(shù),根據(jù)題意得,點的軌跡就是集合,由此得.將上式兩邊平方,并化簡,得所以,動點的軌跡是長軸長、短軸長分別為12、的橢圓故答案為:14、【解析】將方程化為雙曲線的標(biāo)準(zhǔn)方程,再利用雙曲線的定義進行求解.【詳解】將化為,所以,,由雙曲線的定義,得:,即,所以或(舍)故答案為:.15、1【解析】先求導(dǎo),由,代入即得解【詳解】由題意,故答案為:116、【解析】根據(jù)零點定義,分離出,構(gòu)造函數(shù),通過研究的值域來確定的取值范圍【詳解】根據(jù)零點定義,則所以令則,令解得當(dāng)時,,函數(shù)單調(diào)遞減當(dāng)時,,函數(shù)單調(diào)遞增所以當(dāng)時取得最小值,最小值為所以由零點的條件為所以,即的取值范圍為【點睛】本題考查了函數(shù)零點的意義,通過導(dǎo)數(shù)求函數(shù)的值域,分離參數(shù)法的應(yīng)用,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)【解析】(1)取PD的中點E,連接ME,CE,易證四邊形是平行四邊形,得到,再利用線面平行的判定定理證明;(2)建立空間直角坐標(biāo)系,求得平面MBC的一個法向量,易知平面ABCD的一個法向量為:,由求解.【小問1詳解】證明:如圖所示:取PD的中點E,連接ME,CE,因為底面ABCD是矩形,M是PA的中點,N是BC的中點,所以,所以四邊形是平行四邊形,所以,又平面PCD,平面PCD,所以∥平面PCD;【小問2詳解】建立如圖所示空間直角坐標(biāo)系:則,所以,設(shè)平面MBC的一個法向量為,則,即,令,得,易知平面ABCD的一個法向量為:,所以,所以平面MBC與平面ABCD的夾角的余弦值為.18、(1);(2)【解析】(1)求出導(dǎo)數(shù),令,得出變化情況表,即可得出單調(diào)區(qū)間;(2)分離參數(shù)得,構(gòu)造函數(shù),利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)與恰有兩個不同交點即可得出.【詳解】(1)當(dāng)時,函數(shù),則令,得,,當(dāng)x變化時,的變化情況如下表:1+00+↗極大值↘極小值↗∴在上單調(diào)遞減(2)依題意,即.則令,則當(dāng)時,,故單調(diào)遞增,且;當(dāng)時,,故單調(diào)遞減,且∴函數(shù)在處取得最大值故要使與恰有兩個不同的交點,只需∴實數(shù)a的取值范圍是【點睛】關(guān)鍵點睛:本題考查根據(jù)方程根的個數(shù)求參數(shù),解題的關(guān)鍵是參數(shù)分離,構(gòu)造函數(shù)利用導(dǎo)數(shù)討論單調(diào)性,根據(jù)函數(shù)交點個數(shù)判斷.19、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在兩種情況,當(dāng)斜率存在時,設(shè)出直線方程,聯(lián)立橢圓方程,利用韋達定理列出方程,求出定點坐標(biāo),當(dāng)斜率不存在時,設(shè)出點的坐標(biāo)進行求解;(2)結(jié)合第一問的定點坐標(biāo),結(jié)合直角三角形斜邊中線得到存在點,使得為定值,求出結(jié)果.【小問1詳解】設(shè)點,若直線斜率存在時,設(shè)直線的方程為:,代入橢圓方程消去并整理得:,可得,因為,所以,即,根據(jù),代入整理可得:,所以,整理化簡得:,因為不在直線上,所以,故,于是的方程為,所以直線過定點直線過定點.當(dāng)直線的斜率不存在時,可得,由得:,得,結(jié)合可得:,解得:或(舍).此時直線過點【小問2詳解】由(1)可知因為,取中點,則此時,【點睛】直線過定點問題,一般處理思路是分斜率存在和斜率不存在兩種情況,特別是斜率存在時,設(shè)出直線為,聯(lián)立后用韋達定理得到兩根之和與兩根之積,結(jié)合題干條件得到等量關(guān)系,求出的關(guān)系,進而得到定點坐標(biāo).20、(1)(2)【解析】(1)由離心率可得雙曲線的漸近線方程;(2)設(shè),則的中點為,由,可得,然后的方程與雙曲線的漸近線方程聯(lián)立,利用韋達定理可得答案.【小問1詳解】設(shè),則,又,所以,得,所以雙曲線的漸近線方程為.【小問2詳解】由已知直線的傾斜角不是直角,,設(shè),則的中點為,,由,可知,所以,即,因為的方程為,雙曲線的漸近線方程可寫為,由消去y,得,所以,,所以,因為,所以,即.21、(1)證明見解析(2)【解析】建立如圖所示空間直角坐標(biāo)系,得到相關(guān)點和相關(guān)向量的坐標(biāo),(1)求出平面的法向量,利用證明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夾角公式即可求解.【小問1詳解】證明:三棱錐中,,,∴分別以,,,,軸建立如圖所示空間直角坐標(biāo)系∵,,點M是PA的中點,點D是AC的中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度云南省高校教師資格證之高等教育學(xué)題庫練習(xí)試卷B卷附答案
- 2024年度云南省高校教師資格證之高等教育心理學(xué)考前自測題及答案
- 數(shù)據(jù)中心建設(shè)規(guī)劃
- 贛南師范大學(xué)《水文與水資源學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 2023年醫(yī)用衛(wèi)生材料敷料資金申請報告
- 2024年炮塔式銑床項目資金申請報告代可行性研究報告
- 阜陽師范大學(xué)《健美操》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024年紅細胞類診斷抗原項目資金需求報告代可行性研究報告
- 《湖北科技》二(上)生命安全教育教案
- 福建師范大學(xué)協(xié)和學(xué)院《市場調(diào)查與預(yù)測》2021-2022學(xué)年第一學(xué)期期末試卷
- 南方談話學(xué)習(xí)匯報
- 需求變更申請表模板
- 處級干部因公短期出國(出境)申請表
- 福建省廈門市第一中學(xué)2023-2024學(xué)年七年級上學(xué)期期中數(shù)學(xué)試卷
- 國企行測常識900題
- 醫(yī)院病房超市經(jīng)營管理服務(wù)方案
- 社會秩序的維護主要靠法律還是靠道德辯論賽
- 中國各區(qū)域矢量地圖素材(詳細到省市、能編輯)
- 《新員工培訓(xùn)課件:企業(yè)文化及價值觀》
- 小數(shù)乘整數(shù)(說課 上課 課件)
- 小學(xué)生主題班會教學(xué)設(shè)計 隊會《男女平等》 通用版
評論
0/150
提交評論