版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆浙江省嘉興市數(shù)學(xué)高二上期末綜合測(cè)試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,點(diǎn)E是棱PC的中點(diǎn),作,交PB于F.下面結(jié)論正確的個(gè)數(shù)為()①∥平面EDB;②平面EFD;③直線DE與PA所成角為60°;④點(diǎn)B到平面PAC的距離為.A.1 B.2C.3 D.42.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為A. B.C. D.3.已知,則的大小關(guān)系為()A. B.C. D.4.“五一”期間,甲、乙、丙三個(gè)大學(xué)生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來后,三人對(duì)去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實(shí)是甲、乙、丙三人陳述都只對(duì)了一半(關(guān)于去向的地點(diǎn)僅對(duì)一個(gè)).根據(jù)以上信息,可判斷下面說法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南5.已知實(shí)數(shù)滿足方程,則的最大值為()A.3 B.2C. D.6.雙曲線的虛軸長(zhǎng)為()A. B.C.3 D.67.曲線上的點(diǎn)到直線的最短距離是()A. B.C. D.18.設(shè)是雙曲線的一個(gè)焦點(diǎn),,是的兩個(gè)頂點(diǎn),上存在一點(diǎn),使得與以為直徑的圓相切于,且是線段的中點(diǎn),則的漸近線方程為A. B.C. D.9.2021年是中國(guó)共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國(guó)共產(chǎn)黨成立100周年慶?;顒?dòng)標(biāo)識(shí)(圖1),標(biāo)識(shí)由黨徽、數(shù)字“100”“1921”“2021”和56根光芒線組成,生動(dòng)展現(xiàn)中國(guó)共產(chǎn)黨團(tuán)結(jié)帶領(lǐng)中國(guó)人民不忘初心、牢記使命、艱苦奮斗的百年光輝歷程.其中“100”的兩個(gè)“0”設(shè)計(jì)為兩個(gè)半徑為的相交大圓,分別內(nèi)含一個(gè)半徑為1的同心小圓,且同心小圓均與另一個(gè)大圓外切(圖2).已知,在兩大圓的區(qū)域內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自兩大圓公共部分的概率為()A. B.C. D.10.函數(shù)的最小值是()A.3 B.4C.5 D.611.已知數(shù)列滿足,則()A.2 B.C.1 D.12.命題“存在,使得”的否定為()A.存在, B.對(duì)任意,C.對(duì)任意, D.對(duì)任意,二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)是R上的單調(diào)遞增函數(shù),則a的取值范圍是______14.已知,動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡方程為___________.15.已知正項(xiàng)等比數(shù)列的前項(xiàng)和為,且,則_______16.曲線在點(diǎn)處的切線方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,已知△ABC和△PBC均為正三角形,D為BC的中點(diǎn)(1)求證:平面;(2)若,,求三棱錐的體積18.(12分)在一次重大軍事聯(lián)合演習(xí)中,以點(diǎn)為中心的海里以內(nèi)海域被設(shè)為警戒區(qū)域,任何船只不得經(jīng)過該區(qū)域.已知點(diǎn)正北方向海里處有一個(gè)雷達(dá)觀測(cè)站,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)北偏東,且與點(diǎn)相距海里的位置,經(jīng)過小時(shí)又測(cè)得該船已行駛到位于點(diǎn)北偏東,且與點(diǎn)相距海里的位置(1)求該船的行駛速度(單位:海里/小時(shí));(2)該船能否不改變方向繼續(xù)直線航行?請(qǐng)說明理由19.(12分)如圖,已知平面,四邊形為矩形,四邊形為直角梯形,,,,(1)求證:∥平面;(2)求證:平面平面20.(12分)已知數(shù)列通項(xiàng)公式為:,其中.記為數(shù)列的前項(xiàng)和(1)求,;(2)數(shù)列的通項(xiàng)公式為,求的前項(xiàng)和21.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點(diǎn)B到平面PCD的距離;(2)求二面角的平面角的余弦值.22.(10分)如圖,在四棱錐中,四邊形ABCD為正方形,PA⊥底面ABCD,,M,N分別為AB和PC的中點(diǎn)(1)求證:MN//平面PAD;(2)求平面MND與平面PAD的夾角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】①由題意連接交于,連接,則是中位線,證出,由線面平行的判定定理知∥平面;②由底面,得,再由證出平面,即得,再由是正方形證出平面,則有,再由條件證出平面;③根據(jù)邊長(zhǎng)證明△DEO是等邊三角形即可;④根據(jù)等體積法即可求.【詳解】①如圖所示,連接交于點(diǎn),連接底面是正方形,點(diǎn)是的中點(diǎn)在中,是中位線,而平面且平面,∥平面;故①正確;②如圖所示,底面,且平面,,,是等腰直角三角形,又是斜邊的中線,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正確;③如圖所示,連接AC交BD與O,連接OE,由OE是三角形PAC中位線知OE∥PA,故∠DEO為異面直線PA和DE所成角或其補(bǔ)角,由②可知DE=,OD=,OE=,∴△DEO是等邊三角形,∴∠DEO=60°,故③正確;④如圖所示,設(shè)B到平面PAC的距離為d,由題可知PA=AC=PC=,故,由.故④正確.故正確的有:①②③④,正確的個(gè)數(shù)為4.故選:D.2、D【解析】解:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則,故選D3、B【解析】構(gòu)造利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞減,利用單調(diào)性比較大小【詳解】設(shè)恒成立,函數(shù)在上單調(diào)遞減,.故選:B4、D【解析】根據(jù)題意,先假設(shè)甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設(shè)乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【詳解】由題意得,甲、乙、丙三人的陳述都只對(duì)了一半,假設(shè)甲去了北京正確,對(duì)于甲的陳述:則乙去西安錯(cuò)誤,則乙去了云南;對(duì)于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對(duì)于丙的陳述:甲去了云南錯(cuò)誤,乙去了北京也錯(cuò)誤,故假設(shè)錯(cuò)誤.假設(shè)乙去了西安正確,對(duì)于甲的陳述:則甲去了北京錯(cuò)誤,則甲去了云南;對(duì)于乙的陳述:甲去了西安錯(cuò)誤,則丙去了北京正確;對(duì)于丙的陳述:甲去了云南正確,乙去了北京錯(cuò)誤,此種假設(shè)滿足題意,故甲去了云南.故選:D5、D【解析】將方程化為,由圓的幾何性質(zhì)可得答案.【詳解】將方程變形為,則圓心坐標(biāo)為,半徑,則圓上的點(diǎn)的橫坐標(biāo)的范圍為:則x的最大值是故選:D.6、D【解析】根據(jù)題意,由雙曲線的方程求出的值,即可得答案【詳解】因?yàn)?,所以,所以雙曲線的虛軸長(zhǎng)為.故選:D.7、B【解析】先求與平行且與相切的切線切點(diǎn),再根據(jù)點(diǎn)到直線距離公式得結(jié)果.【詳解】設(shè)與平行的直線與相切,則切線斜率k=1,∵∴,由,得當(dāng)時(shí),即切點(diǎn)坐標(biāo)為P(1,0),則點(diǎn)(1,0)到直線的距離就是線上的點(diǎn)到直線的最短距離,∴點(diǎn)(1,0)到直線的距離為:,∴曲線上的點(diǎn)到直線l:的距離的最小值為.故選:B8、C【解析】根據(jù)圖形的幾何特性轉(zhuǎn)化成雙曲線的之間的關(guān)系求解.【詳解】設(shè)另一焦點(diǎn)為,連接,由于是圓的切線,則,且,又是的中點(diǎn),則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單的幾何性質(zhì),屬于中檔題.9、B【解析】求出兩圓相交公共部分兩個(gè)弓形面積,結(jié)合兩圓面積可得概率【詳解】如圖,是兩圓心,是兩圓交點(diǎn)坐標(biāo),四邊形邊長(zhǎng)均為,又,所以,所以,四邊形是正方形,,弓形面積為,兩個(gè)弓形面積為,兩圓涉及部分面積為所以所求概率為故選:B10、D【解析】先判斷函數(shù)的單調(diào)性,再利用其單調(diào)性求最小值【詳解】由,得,因?yàn)?,所以,所以在上單調(diào)遞增,所以,故選:D11、D【解析】首先得到數(shù)列的周期,再計(jì)算的值.【詳解】由條件,可知,兩式相加可得,即,所以數(shù)列是以周期為的周期數(shù)列,.故選:D12、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對(duì)任意,”.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對(duì)求導(dǎo),由題設(shè)有恒成立,再利用導(dǎo)數(shù)求的最小值,即可求a的范圍.【詳解】由題設(shè),,又在R上的單調(diào)遞增函數(shù),∴恒成立,令,則,∴當(dāng)時(shí),則遞減;當(dāng)時(shí),則遞增.∴,故.故答案為:.14、【解析】表示出、,根據(jù)題意,列出等式,化簡(jiǎn)整理即可得答案.【詳解】,由題意得,所以整理可得,即.故答案為:.15、【解析】根據(jù)給定條件求出正項(xiàng)等比數(shù)列的公比即可計(jì)算作答.【詳解】設(shè)正項(xiàng)等比數(shù)列的公比為,依題意,,即,而,解得,所以.故答案為:16、【解析】先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,最后根據(jù)點(diǎn)斜式求切線方程.【詳解】函數(shù)的導(dǎo)數(shù)為,所以切線的斜率,切點(diǎn)為,則切線方程為故答案為:【點(diǎn)睛】易錯(cuò)點(diǎn)睛:求曲線的切線要注意“過點(diǎn)P的切線”與“在點(diǎn)P處的切線”的差異,過點(diǎn)P的切線中,點(diǎn)P不一定是切點(diǎn),點(diǎn)P也不一定在已知曲線上,而在點(diǎn)P處的切線,必以點(diǎn)P為切點(diǎn),考查學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】【小問1詳解】因?yàn)椤鰽BC和△PBC為正三角形,D為BC的中點(diǎn),所以,又,所以平面【小問2詳解】因?yàn)椤鰽BC和△PBC為正三角形,且,所以,又,所以正三角形的面積為,所以.18、(1)海里/小時(shí);(2)該船要改變航行方向,理由見解析.【解析】(1)設(shè)一個(gè)單位為海里,建立以為坐標(biāo)原點(diǎn),正東、正北方向分別為、軸的正方向建立平面直角坐標(biāo)系,計(jì)算出,即可求得該船的行駛速度;(2)求出直線的方程,計(jì)算出點(diǎn)到直線的距離,可得出結(jié)論.【小問1詳解】解:設(shè)一個(gè)單位為海里,建立以為坐標(biāo)原點(diǎn),正東、正北方向分別為、軸的正方向建立如下圖所示的平面直角坐標(biāo)系,則坐標(biāo)平面中,,且,,則、、,,所以,所以、兩地的距離為海里,所以該船行駛的速度為海里/小時(shí).【小問2詳解】解:直線的斜率為,所以直線的方程為,即,所以點(diǎn)到直線的距離為,所以直線會(huì)與以為圓心,以個(gè)單位長(zhǎng)為半徑的圓相交,因此該船要改變航行方向,否則會(huì)進(jìn)入警戒區(qū)域19、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)線面平行的判定,證明即可;(2)過C作,垂足為M,根據(jù)勾股定理證明,再根據(jù)線面垂直的性質(zhì)與判定證明平面BCE即可【小問1詳解】證明:因?yàn)樗倪呅蜛BEF為矩形,所以,又平面BCE,平面BCE,所以平面BCE【小問2詳解】過C作,垂足為M,則四邊形ADCM為矩形因?yàn)?,,所以,,,,所以,所以因?yàn)槠矫鍭BCD,,所以平面ABCD,所以又平面BCE,平面BCE,,所以平面BCE,又平面ACF,所以平面平面BCE20、(1);;(2).【解析】(1)驗(yàn)證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,利用錯(cuò)位相減法可求得結(jié)果.【小問1詳解】當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;數(shù)列是以為周期的周期數(shù)列;,;【小問2詳解】由(1)得:,,,,兩式作差得:.21、(1)(2)【解析】(1)建立空間直角坐標(biāo)系,用點(diǎn)到面的距離公式即可算出答案;(2)先求出兩個(gè)面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點(diǎn)為坐標(biāo)原點(diǎn),分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,D(3,6,0),A(0,6,0)設(shè)平面的一個(gè)法向量所以n?PD令,可得記點(diǎn)到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個(gè)法向量為平面的一個(gè)法向量為設(shè)二面角的平面角為由圖可知,22、(1)證明見解析;(2).【解析】(1)在平面中構(gòu)造與平行的直線,利用線線平行推證線面平行即可;(2)以為坐標(biāo)原點(diǎn)建立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 婦女病普查組織管理
- 2024年度外貿(mào)公司風(fēng)險(xiǎn)控制合同實(shí)施細(xì)則3篇
- 2024年度醫(yī)療服務(wù)與健康合作協(xié)議3篇
- 2024年護(hù)士職責(zé)與待遇協(xié)議3篇
- 2024年水泥磚買賣協(xié)議格式版B版
- 2024版bot語音識(shí)別與自然語言處理合同范本2篇
- 2024年互聯(lián)網(wǎng)公司文員信息保密合同范本3篇
- 工行客服經(jīng)理業(yè)務(wù)培訓(xùn)
- 2024版中介獨(dú)家銷售授權(quán)協(xié)議3篇
- 2024年度房產(chǎn)抵押保證擔(dān)保借款合同3篇
- proe基礎(chǔ)教程(完整)演示文稿
- 行為金融學(xué)課后答案1至5章anawer
- 2023年報(bào)告文學(xué)研究(自考)(重點(diǎn))題庫(帶答案)
- 國(guó)軍淞滬會(huì)戰(zhàn)
- 2023年湖南體育職業(yè)學(xué)院高職單招(語文)試題庫含答案解析
- GB/T 39314-2020鋁合金石膏型鑄造通用技術(shù)導(dǎo)則
- 裝飾裝修施工質(zhì)量檢查評(píng)分表
- 非開挖施工技術(shù)講稿課件
- 單絨毛膜雙羊膜囊雙胎2022優(yōu)秀課件
- 《思想道德與法治》 課件 第四章 明確價(jià)值要求 踐行價(jià)值準(zhǔn)則
- 北師大版八年級(jí)上數(shù)學(xué)競(jìng)賽試卷
評(píng)論
0/150
提交評(píng)論