2024屆浙江省嘉興市數(shù)學高二上期末綜合測試試題含解析_第1頁
2024屆浙江省嘉興市數(shù)學高二上期末綜合測試試題含解析_第2頁
2024屆浙江省嘉興市數(shù)學高二上期末綜合測試試題含解析_第3頁
2024屆浙江省嘉興市數(shù)學高二上期末綜合測試試題含解析_第4頁
2024屆浙江省嘉興市數(shù)學高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省嘉興市數(shù)學高二上期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,點E是棱PC的中點,作,交PB于F.下面結論正確的個數(shù)為()①∥平面EDB;②平面EFD;③直線DE與PA所成角為60°;④點B到平面PAC的距離為.A.1 B.2C.3 D.42.若拋物線的焦點與橢圓的右焦點重合,則的值為A. B.C. D.3.已知,則的大小關系為()A. B.C. D.4.“五一”期間,甲、乙、丙三個大學生外出旅游,已知一人去北京,一人去兩安,一人去云南.回來后,三人對去向作了如下陳述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事實是甲、乙、丙三人陳述都只對了一半(關于去向的地點僅對一個).根據(jù)以上信息,可判斷下面說法中正確的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南5.已知實數(shù)滿足方程,則的最大值為()A.3 B.2C. D.6.雙曲線的虛軸長為()A. B.C.3 D.67.曲線上的點到直線的最短距離是()A. B.C. D.18.設是雙曲線的一個焦點,,是的兩個頂點,上存在一點,使得與以為直徑的圓相切于,且是線段的中點,則的漸近線方程為A. B.C. D.9.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶?;顒訕俗R(圖1),標識由黨徽、數(shù)字“100”“1921”“2021”和56根光芒線組成,生動展現(xiàn)中國共產(chǎn)黨團結帶領中國人民不忘初心、牢記使命、艱苦奮斗的百年光輝歷程.其中“100”的兩個“0”設計為兩個半徑為的相交大圓,分別內(nèi)含一個半徑為1的同心小圓,且同心小圓均與另一個大圓外切(圖2).已知,在兩大圓的區(qū)域內(nèi)隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.10.函數(shù)的最小值是()A.3 B.4C.5 D.611.已知數(shù)列滿足,則()A.2 B.C.1 D.12.命題“存在,使得”的否定為()A.存在, B.對任意,C.對任意, D.對任意,二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)是R上的單調(diào)遞增函數(shù),則a的取值范圍是______14.已知,動點滿足,則點的軌跡方程為___________.15.已知正項等比數(shù)列的前項和為,且,則_______16.曲線在點處的切線方程為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱錐中,已知△ABC和△PBC均為正三角形,D為BC的中點(1)求證:平面;(2)若,,求三棱錐的體積18.(12分)在一次重大軍事聯(lián)合演習中,以點為中心的海里以內(nèi)海域被設為警戒區(qū)域,任何船只不得經(jīng)過該區(qū)域.已知點正北方向海里處有一個雷達觀測站,某時刻測得一艘勻速直線行駛的船只位于點北偏東,且與點相距海里的位置,經(jīng)過小時又測得該船已行駛到位于點北偏東,且與點相距海里的位置(1)求該船的行駛速度(單位:海里/小時);(2)該船能否不改變方向繼續(xù)直線航行?請說明理由19.(12分)如圖,已知平面,四邊形為矩形,四邊形為直角梯形,,,,(1)求證:∥平面;(2)求證:平面平面20.(12分)已知數(shù)列通項公式為:,其中.記為數(shù)列的前項和(1)求,;(2)數(shù)列的通項公式為,求的前項和21.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,平面ABCD,,.(1)求點B到平面PCD的距離;(2)求二面角的平面角的余弦值.22.(10分)如圖,在四棱錐中,四邊形ABCD為正方形,PA⊥底面ABCD,,M,N分別為AB和PC的中點(1)求證:MN//平面PAD;(2)求平面MND與平面PAD的夾角的余弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】①由題意連接交于,連接,則是中位線,證出,由線面平行的判定定理知∥平面;②由底面,得,再由證出平面,即得,再由是正方形證出平面,則有,再由條件證出平面;③根據(jù)邊長證明△DEO是等邊三角形即可;④根據(jù)等體積法即可求.【詳解】①如圖所示,連接交于點,連接底面是正方形,點是的中點在中,是中位線,而平面且平面,∥平面;故①正確;②如圖所示,底面,且平面,,,是等腰直角三角形,又是斜邊的中線,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正確;③如圖所示,連接AC交BD與O,連接OE,由OE是三角形PAC中位線知OE∥PA,故∠DEO為異面直線PA和DE所成角或其補角,由②可知DE=,OD=,OE=,∴△DEO是等邊三角形,∴∠DEO=60°,故③正確;④如圖所示,設B到平面PAC的距離為d,由題可知PA=AC=PC=,故,由.故④正確.故正確的有:①②③④,正確的個數(shù)為4.故選:D.2、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D3、B【解析】構造利用導數(shù)判斷函數(shù)在上單調(diào)遞減,利用單調(diào)性比較大小【詳解】設恒成立,函數(shù)在上單調(diào)遞減,.故選:B4、D【解析】根據(jù)題意,先假設甲去了北京正確,則可分析其他人的陳述是否符合題意,再假設乙去西安正確,分析其他人的陳述是否符合題意,即可得答案.【詳解】由題意得,甲、乙、丙三人的陳述都只對了一半,假設甲去了北京正確,對于甲的陳述:則乙去西安錯誤,則乙去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南錯誤,乙去了北京也錯誤,故假設錯誤.假設乙去了西安正確,對于甲的陳述:則甲去了北京錯誤,則甲去了云南;對于乙的陳述:甲去了西安錯誤,則丙去了北京正確;對于丙的陳述:甲去了云南正確,乙去了北京錯誤,此種假設滿足題意,故甲去了云南.故選:D5、D【解析】將方程化為,由圓的幾何性質(zhì)可得答案.【詳解】將方程變形為,則圓心坐標為,半徑,則圓上的點的橫坐標的范圍為:則x的最大值是故選:D.6、D【解析】根據(jù)題意,由雙曲線的方程求出的值,即可得答案【詳解】因為,所以,所以雙曲線的虛軸長為.故選:D.7、B【解析】先求與平行且與相切的切線切點,再根據(jù)點到直線距離公式得結果.【詳解】設與平行的直線與相切,則切線斜率k=1,∵∴,由,得當時,即切點坐標為P(1,0),則點(1,0)到直線的距離就是線上的點到直線的最短距離,∴點(1,0)到直線的距離為:,∴曲線上的點到直線l:的距離的最小值為.故選:B8、C【解析】根據(jù)圖形的幾何特性轉(zhuǎn)化成雙曲線的之間的關系求解.【詳解】設另一焦點為,連接,由于是圓的切線,則,且,又是的中點,則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點睛】本題考查雙曲線的簡單的幾何性質(zhì),屬于中檔題.9、B【解析】求出兩圓相交公共部分兩個弓形面積,結合兩圓面積可得概率【詳解】如圖,是兩圓心,是兩圓交點坐標,四邊形邊長均為,又,所以,所以,四邊形是正方形,,弓形面積為,兩個弓形面積為,兩圓涉及部分面積為所以所求概率為故選:B10、D【解析】先判斷函數(shù)的單調(diào)性,再利用其單調(diào)性求最小值【詳解】由,得,因為,所以,所以在上單調(diào)遞增,所以,故選:D11、D【解析】首先得到數(shù)列的周期,再計算的值.【詳解】由條件,可知,兩式相加可得,即,所以數(shù)列是以周期為的周期數(shù)列,.故選:D12、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】對求導,由題設有恒成立,再利用導數(shù)求的最小值,即可求a的范圍.【詳解】由題設,,又在R上的單調(diào)遞增函數(shù),∴恒成立,令,則,∴當時,則遞減;當時,則遞增.∴,故.故答案為:.14、【解析】表示出、,根據(jù)題意,列出等式,化簡整理即可得答案.【詳解】,由題意得,所以整理可得,即.故答案為:.15、【解析】根據(jù)給定條件求出正項等比數(shù)列的公比即可計算作答.【詳解】設正項等比數(shù)列的公比為,依題意,,即,而,解得,所以.故答案為:16、【解析】先求導數(shù),再根據(jù)導數(shù)幾何意義得切線斜率,最后根據(jù)點斜式求切線方程.【詳解】函數(shù)的導數(shù)為,所以切線的斜率,切點為,則切線方程為故答案為:【點睛】易錯點睛:求曲線的切線要注意“過點P的切線”與“在點P處的切線”的差異,過點P的切線中,點P不一定是切點,點P也不一定在已知曲線上,而在點P處的切線,必以點P為切點,考查學生的運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】【小問1詳解】因為△ABC和△PBC為正三角形,D為BC的中點,所以,又,所以平面【小問2詳解】因為△ABC和△PBC為正三角形,且,所以,又,所以正三角形的面積為,所以.18、(1)海里/小時;(2)該船要改變航行方向,理由見解析.【解析】(1)設一個單位為海里,建立以為坐標原點,正東、正北方向分別為、軸的正方向建立平面直角坐標系,計算出,即可求得該船的行駛速度;(2)求出直線的方程,計算出點到直線的距離,可得出結論.【小問1詳解】解:設一個單位為海里,建立以為坐標原點,正東、正北方向分別為、軸的正方向建立如下圖所示的平面直角坐標系,則坐標平面中,,且,,則、、,,所以,所以、兩地的距離為海里,所以該船行駛的速度為海里/小時.【小問2詳解】解:直線的斜率為,所以直線的方程為,即,所以點到直線的距離為,所以直線會與以為圓心,以個單位長為半徑的圓相交,因此該船要改變航行方向,否則會進入警戒區(qū)域19、(1)證明見解析(2)證明見解析【解析】(1)根據(jù)線面平行的判定,證明即可;(2)過C作,垂足為M,根據(jù)勾股定理證明,再根據(jù)線面垂直的性質(zhì)與判定證明平面BCE即可【小問1詳解】證明:因為四邊形ABEF為矩形,所以,又平面BCE,平面BCE,所以平面BCE【小問2詳解】過C作,垂足為M,則四邊形ADCM為矩形因為,,所以,,,,所以,所以因為平面ABCD,,所以平面ABCD,所以又平面BCE,平面BCE,,所以平面BCE,又平面ACF,所以平面平面BCE20、(1);;(2).【解析】(1)驗證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,利用錯位相減法可求得結果.【小問1詳解】當時,;當時,;當時,;數(shù)列是以為周期的周期數(shù)列;,;【小問2詳解】由(1)得:,,,,兩式作差得:.21、(1)(2)【解析】(1)建立空間直角坐標系,用點到面的距離公式即可算出答案;(2)先求出兩個面的法向量,然后用二面角公式即可.【小問1詳解】∵平面平面∴PB⊥AB,PB⊥BC,又兩兩互相垂直,所以,以點為坐標原點,分別為軸,軸,軸建立如圖所示的空間直角坐標系,D(3,6,0),A(0,6,0)設平面的一個法向量所以n?PD令,可得記點到平面的距離為,則d=【小問2詳解】由(1)可知平面的一個法向量為平面的一個法向量為設二面角的平面角為由圖可知,22、(1)證明見解析;(2).【解析】(1)在平面中構造與平行的直線,利用線線平行推證線面平行即可;(2)以為坐標原點建立

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論