![2024屆內蒙古太仆寺旗寶昌第一中學高二數學第一學期期末檢測試題含解析_第1頁](http://file4.renrendoc.com/view/9f11c29668a200954183c25c2fbbe42c/9f11c29668a200954183c25c2fbbe42c1.gif)
![2024屆內蒙古太仆寺旗寶昌第一中學高二數學第一學期期末檢測試題含解析_第2頁](http://file4.renrendoc.com/view/9f11c29668a200954183c25c2fbbe42c/9f11c29668a200954183c25c2fbbe42c2.gif)
![2024屆內蒙古太仆寺旗寶昌第一中學高二數學第一學期期末檢測試題含解析_第3頁](http://file4.renrendoc.com/view/9f11c29668a200954183c25c2fbbe42c/9f11c29668a200954183c25c2fbbe42c3.gif)
![2024屆內蒙古太仆寺旗寶昌第一中學高二數學第一學期期末檢測試題含解析_第4頁](http://file4.renrendoc.com/view/9f11c29668a200954183c25c2fbbe42c/9f11c29668a200954183c25c2fbbe42c4.gif)
![2024屆內蒙古太仆寺旗寶昌第一中學高二數學第一學期期末檢測試題含解析_第5頁](http://file4.renrendoc.com/view/9f11c29668a200954183c25c2fbbe42c/9f11c29668a200954183c25c2fbbe42c5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆內蒙古太仆寺旗寶昌第一中學高二數學第一學期期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面上給定相異兩點,設點在同一平面上且滿足,當且時,點的軌跡是一個圓,這個軌跡最先由古希臘數學家阿波羅尼斯發(fā)現,故我們稱這個圓為阿波羅尼斯圓.現有雙曲線,為雙曲線的左、右頂點,為雙曲線的虛軸端點,動點滿足,面積的最大值為,面積的最小值為,則雙曲線的離心率為()A. B.C. D.2.已知數列的前項和為,滿足,,,則()A. B.C.,,成等差數列 D.,,成等比數列3.已知向量,,且與互相平行,則的值為()A.-2 B.C. D.4.已知向量,,則下列向量中,使能構成空間的一個基底的向量是()A. B.C. D.5.已知數列滿足:,數列的前n項和為,若恒成立,則的取值范圍是()A. B.C. D.6.已知正三棱柱中,,點為中點,則異面直線與所成角的余弦值為()A. B.C. D.7.若曲線f(x)=x2的一條切線l與直線平行,則l的方程為()A.4x-y-4=0 B.x+4y-5=0C.x-4y+3=0 D.4x+y+4=08.阿基米德不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到橢圓的面積公式,設橢圓的長半軸長、短半軸長分別為,則橢圓的面積公式為,若橢圓的離心率為,面積為,則橢圓的標準方程為()A.或 B.或C.或 D.或9.設等比數列,有下列四個命題:①{a②是等比數列;③是等比數列;④lgan其中正確命題的個數是()A.1 B.2C.3 D.410.已知命題p:,,則命題p的否定為()A, B.,C., D.,11.已知F1(-1,0),F2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.12.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若兩平行直線3x-2y-1=0,6x+ay+c=0之間的距離為,則的值為________14.已知焦點為F的拋物線的方程為,點Q的坐標為,點P在拋物線上,則點P到y軸的距離與到點Q的距離的和的最小值為______.15.設命題:,,則為______.16.某學校要從6名男生和4名女生中選出3人擔任進博會志愿者,則所選3人中男女生都有的概率為___________.(用數字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面ABCD是邊長為2的菱形,,,且,E為PD的中點(1)求證:;(2)求二面角的大?。唬?)在側棱PC上是否存在點F,使得點F到平面AEC的距離為?若存在,求出的值;若不存在,請說明理由18.(12分)設等差數列的前項和為(1)求的通項公式;(2)求數列的前項和19.(12分)某微小企業(yè)員工的年齡分布莖葉圖如圖所示:(1)求該公司員工年齡的極差和第25百分位數;(2)從該公司員工中隨機抽取一位,記所抽取員工年齡在區(qū)間內為事件,所抽取員工年齡在區(qū)間內為事件,判斷事件與是否互相獨立,并說明理由;20.(12分)在三棱柱中,側面正方形的中心為點平面,且,點滿足(1)若平面,求的值;(2)求點到平面的距離;(3)若平面與平面所成角的正弦值為,求的值21.(12分)在二項式的展開式中;(1)若,求常數項;(2)若第4項的系數與第7項的系數比為,求:①二項展開式中的各項的二項式系數之和;②二項展開式中各項的系數之和22.(10分)已知函數,其中為實數.(1)若函數的圖像在處的切線與直線平行,求函數的解析式;(2)若,求在上的最大值和最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先求動點的軌跡方程,再根據面積的最大值求得,根據的面積最小值求,由此可求雙曲線的離心率.【詳解】設,,,依題意得,即,兩邊平方化簡得,所以動點的軌跡是圓心為,半徑的圓,當位于圓的最高點時的面積最大,所以,解得;當位于圓的最左端時的面積最小,所以,解得,故雙曲線的離心率為.故選:C.2、C【解析】寫出數列前幾項,觀察規(guī)律,找到數列變化的周期,再依次去判斷各項的說法即可解決.【詳解】數列中,,,,則此數列為1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即數列的各項是周期為6數值循環(huán)重復的一列數,選項A:,,則.判斷錯誤;選項B:由,可知當時,.判斷錯誤;選項C:,則,即,,成等差數列.判斷正確;選項D:,,則,,即,,不能構成等比數列.判斷錯誤.故選:C3、A【解析】應用空間向量坐標的線性運算求、的坐標,根據空間向量平行有,即可求的值.【詳解】由題設,,,∵與互相平行,∴且,則,可得.故選:A4、D【解析】根據向量共面基本定理只需無解即可滿足構成空間向量基底,據此檢驗各選項即可得解.【詳解】因為,所以A中的向量不能與,構成基底;因為,所以B中的向量不能與,構成基底;對于,設,則,解得,,所以,故,,為共面向量,所以C中的向量不能與,構成基底;對于,設,則,此方程組無解,所以,,不共面,故D中的向量與,可以構成基底.故選:D5、D【解析】由于,所以利用裂項相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【詳解】,故,故恒成立等價于,即恒成立,化簡得到,因為,當且僅當,即時取等號,所以故選:D6、A【解析】根據異面直線所成角的定義,取中點為,則為異面直線和所成角或其補角,再解三角形即可求出【詳解】如圖所示:設中點為,則在三角形中,為中點,為中位線,所以有,,所以為異面直線和所成角或其補角,在三角形中,,所以由余弦定理有,故選:A.7、D【解析】設切點為,則切線的斜率為,然后根據條件可得的值,然后可得答案.【詳解】設切點為,因為,所以切線的斜率為因為曲線f(x)=x2的一條切線l與直線平行,所以,即所以l的方程為,即故選:D8、B【解析】根據題意列出的關系式,即可求得,再分焦點在軸與軸兩種情況寫出標準方程.【詳解】根據題意,可得,所以橢圓的標準方程為或.故選:B9、C【解析】根據等比數列的性質對四個命題逐一分析,由此確定正確命題的個數.【詳解】是等比數列可得(為定值)①為常數,故①正確②,故②正確③為常數,故③正確④不一定為常數,故④錯誤故選C.【點睛】本小題主要考查等比數列的性質,屬于基礎題.10、A【解析】根據特稱命題的否定是全稱命題,結合已知條件,即可求得結果.【詳解】因為命題p:,,故命題p的否定為:,.故選:A.11、A【解析】由題得c=1,再根據△MF2N的周長=4a=8得a=2,進而求出b的值得解.【詳解】∵F1(-1,0),F2(1,0)是橢圓的兩個焦點,∴c=1,又根據橢圓的定義,△MF2N的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學生對這些知識的掌握水平和分析推理能力.12、D【解析】根據橢圓定義及正三角形的性質可得到\,再在中運用余弦定理得到、的關系,進而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【點睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、±1【解析】由題意得=≠,∴a=-4且c≠-2,則6x+ay+c=0可化為3x-2y+=0,由兩平行線間的距離公式,得=,解得c=2或c=-6,∴=±114、##【解析】利用定義將所求距離之和的最小值問題,轉化為的最小值問題.【詳解】焦點F坐標為,拋物線準線為,如圖,作垂直于準線于A,交y軸于B,.故答案為:15、,【解析】由全稱命題的否定即可得到答案【詳解】根據全稱命題的否定,可得為,【點睛】本題考查了含有量詞的命題否定,屬于基礎題16、##0.8【解析】由排列組合知識求得所選3人中男女生都有方法數及總的選取方法數后可計算概率【詳解】從6名男生和4名女生中選出3人的方法數是,所選3人中男女生都有的方法數為,所以概率為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)存在;【解析】(1)作出輔助線,證明線面垂直,進而證明線線垂直;(2)建立空間直角坐標系,用空間向量求解二面角;(3)設出F點坐標,用空間向量的點到平面距離公式進行求解.【小問1詳解】證明:連接BD,設BD與AC交于點O,連接PO.因為,所以四棱錐中,底面ABCD是邊長為2的菱形,則又,所以平面PBD,因為平面PBD,所以【小問2詳解】因為,所以,所以由(1)知平面ABCD,以O為原點,,,的方向為x軸,y軸,z軸正方向,建立空間直角坐標系,則,,,,,,所以,,,設平面AEC的法向量,則,即,令,則平面ACD的法向量,,所以二面角為;【小問3詳解】存在點F到平面AEC的距離為,理由如下:由(2)得,,設,則,所以點F到平面AEC的距離,解得,,所以18、(1);(2).【解析】(1)根據等差數列前n項和求和公式求出首項和公差,進而求出通項公式;(2)結合(1)求出,再令得出數列的正數項和負數項,進而結合等差數列求和公式求得答案.【小問1詳解】設等差數列的首項和公差分別為和,∴,解得:所以.【小問2詳解】,所以.當;當,當,時,,當時,.綜上:.19、(1)極差為;第25百分位數為(2)事件和相互獨立,理由見解析【解析】(1)根據定義直接計算極差和百分位數得到答案.(2)計算得到,,,即,得到答案.【小問1詳解】員工年齡的極差為,,故第25百分位數為.【小問2詳解】,,,故,故事件和相互獨立.20、(1);(2);(3)或.【解析】(1)連接ME,證明即可計算作答.(2)以為原點,的方向分別為軸正方向建立空間直角坐標系,借助空間向量計算點到平面的距離即可.(3)由(2)中空間直角坐標系,借助空間向量求平面與平面所成角的余弦即可計算作答.【小問1詳解】在三棱柱中,因,即點在上,連接ME,如圖,因平面面,面面,則有,而為中點,于是得為的中點,所以.【小問2詳解】在三棱柱中,面面,則點到平面的距離等于點到平面的距離,又為正方形,即,而平面,以為原點,的方向分別為軸正方向建立空間直角坐標系,如圖,依題意,,則,,設平面的法向量為,則,令,得,又,則到平面的距離,所以點到平面的距離為.【小問3詳解】因,則,,設面的法向量為,則,令,得,于是得,而平面與平面所成角的正弦值為,則,即,整理得,解得或,所以的值是或.【點睛】易錯點睛:空間向量求二面角時,一是兩平面的法向量的夾角不一定是所求的二面角,二是利用方程思想進行向量運算,要認真細心,準確計算.21、(1)60(2)①1024;②1【解析】(1)根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024秋七年級數學上冊 第二章 有理數2.2數軸 2在數軸上比較數的大小說課稿(新版)華東師大版
- 2023九年級數學下冊 第二十八章 銳角三角函數28.2 解直角三角形及其應用28.2.2 應用舉例第2課時 方向角和坡角問題說課稿 (新版)新人教版
- Module 7 Unit 2 There are twelve boys on the bike(說課稿)-2024-2025學年外研版(三起)英語 四年級上冊
- 16赤壁賦說課稿
- 4《說說我們的學?!罚ㄕf課稿)- 2004-2025學年統編版道德與法治三年級上冊001
- 2025銷售居間合同勞動合同
- Unit4《Bobbys House》lesson6(說課稿)-2024-2025學年北師大版(三起)英語四年級上冊
- 10在牛肚子里旅行 說課稿-2024-2025學年三年級上冊語文統編版
- 16新年的禮物 (說課稿)統編版道德與法治一年級上冊
- 2024年九年級語文上冊 第五單元 第9課《劉姥姥進賈府》說課稿 北師大版
- 2025年醫(yī)美醫(yī)院公司組織架構和業(yè)務流程
- 防滑防摔倒安全教育
- 乳腺癌課件教學課件
- 連續(xù)性腎替代治療抗菌藥物劑量調整專家共識(2024年版)解讀
- 春節(jié)節(jié)后收心安全培訓
- 2024年廣西區(qū)公務員錄用考試《行測》真題及答案解析
- 高中物理斜面模型大全(80個)
- 2025年高考物理復習壓軸題:電磁感應綜合問題(解析版)
- 2024-2030年芯片行業(yè)市場發(fā)展分析及發(fā)展趨勢前景預測報告
- 2024年個人車位租賃合同經典版(二篇)
- 相互批評意見500條【5篇】
評論
0/150
提交評論