2024屆江西省九江市第三中學高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2024屆江西省九江市第三中學高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2024屆江西省九江市第三中學高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2024屆江西省九江市第三中學高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2024屆江西省九江市第三中學高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆江西省九江市第三中學高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若方程表示焦點在y軸上的雙曲線,則k的取值范圍是()A. B.C. D.2.曲線在處的切線的斜率為()A.-1 B.1C.2 D.33.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”4.“楊輝三角”是中國古代數(shù)學文化的瑰寶之一,最早在中國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書中出現(xiàn).如圖所示的楊輝三角中,第8行,第3個數(shù)是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.565.如果橢圓上一點到焦點的距離等于6,則線段的中點到坐標原點的距離等于()A.7 B.10C.12 D.146.過拋物線()的焦點作斜率大于的直線交拋物線于,兩點(在的上方),且與準線交于點,若,則A. B.C. D.7.在平面區(qū)域內(nèi)隨機投入一點P,則點P的坐標滿足不等式的概率是()A. B.C. D.8.數(shù)列滿足,對任意,都有,則()A. B.C. D.9.若則()A.?2 B.?1C.1 D.210.設(shè),,且,則等于()A. B.C. D.11.雙曲線的左、右焦點分別為F1,F(xiàn)2,點P在雙曲線上,下列結(jié)論不正確的是()A.該雙曲線的離心率為B.該雙曲線的漸近線方程為C.點P到兩漸近線的距離的乘積為D.若PF1⊥PF2,則△PF1F2的面積為3212.在棱長均為1的平行六面體中,,則()A. B.3C. D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知在四面體ABCD中,,,則______14.的展開式中的常數(shù)項為_______.15.已知圓錐底面半徑為1,高為,則該圓錐的側(cè)面積為_____16.已知圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,則圓心的軌跡方程為______,若點,,則周長的最小值為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,點在橢圓上,直線與交于,兩點(1)求橢圓的方程及焦點坐標;(2)若線段的垂直平分線經(jīng)過點,求的取值范圍18.(12分)如圖,在直三棱柱中,,,,,分別為,的中點(1)求證:;(2)求直線與平面所成角的正弦值19.(12分)在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點E為棱AD的中點(1)求證:平面ABCD;(2)求直線AB與平面PBC所成角的正弦值20.(12分)如圖,在平面直角坐標系xOy中,已知拋物線C:y2=4x的焦點為F,準線為l,過點F且斜率大于0的直線交拋物線C于A,B兩點(其中A在B的上方),過線段AB的中點M且與x軸平行的直線依次交直線OA、OB,l于點P、Q、N(1)試探索PM與NQ長度的大小關(guān)系,并證明你的結(jié)論;(2)當P、Q是線段MN的三等分點時,求直線AB的斜率;(3)當P、Q不是線段MN的三等分點時,證明:以點Q為圓心、線段QO長為半徑的圓Q不可能包圍線段NP21.(12分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD是矩形,PA=2AD=4,且PC=.點E在PC上.(1)求證:平面BDE⊥平面PAC;(2)若E為PC的中點,求直線PC與平面AED所成的角的正弦值.22.(10分)如圖,在直三棱柱中,,E、F分別是、的中點(1)求證:平面;(2)求證:平面

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由條件可得,即可得到答案.【詳解】方程表示焦點在y軸上的雙曲線所以,即故選:B2、D【解析】先求解出導函數(shù),然后代入到導函數(shù)中,所求導數(shù)值即為切線斜率.【詳解】因為,所以,所以切線的斜率為.故選:D.3、C【解析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個為真命題,當二者為一真一假時,為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯誤,故選:C4、B【解析】由題意知第8行的數(shù)就是二項式的展開式中各項的二項式系數(shù),可得第8行,第3個數(shù)是為,即可求解【詳解】解:由題意知第8行的數(shù)就是二項式的展開式中各項的二項式系數(shù),故第8行,第3個數(shù)是為故選:B5、A【解析】可由橢圓方程先求出,在利用橢圓的定義求出,利用已知求解出,再取的中點,連接,利用中位線,即可求解出線段的中點到坐標原點的距離.【詳解】因為橢圓,,所以,結(jié)合得,,取的中點,連接,所以為的中位線,所以.故選:A.6、A【解析】分別過作準線的垂線,垂足分別為,設(shè),則,,故選A.7、A【解析】根據(jù)題意作出圖形,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.8、C【解析】首先根據(jù)題設(shè)條件可得,然后利用累加法可得,所以,最后利用裂項相消法求和即可.【詳解】由,得,則,所以,.故選:C.【點睛】本題考查累加法求數(shù)列通項,考查利用錯位相減法求數(shù)列的前n項和,考查邏輯思維能力和計算能力,屬于常考題.9、B【解析】分子分母同除以,化弦為切,代入即得結(jié)果.【詳解】由題意,分子分母同除以,可得.故選:B.10、A【解析】由空間向量垂直的坐標表示可求得實數(shù)的值.【詳解】由已知可得,解得.故選:A.11、D【解析】根據(jù)雙曲線的離心率、漸近線、點到直線距離公式、三角形的面積等知識來確定正確答案.【詳解】由題意可知,a=3,b=4,c=5,,故離心率e,故A正確;由雙曲線的性質(zhì)可知,雙曲線線的漸近線方程為y=±x,故B正確;設(shè)P(x,y),則P到兩漸近線的距離之積為,故C正確;若PF1⊥PF2,則△PF1F2是直角三角形,由勾股定理得,由雙曲線的定義可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D錯誤.故選:D12、C【解析】設(shè),,,利用結(jié)合數(shù)量積的運算即可得到答案.【詳解】設(shè),,,由已知,得,,,,所以,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】由線段的空間關(guān)系有,應(yīng)用向量數(shù)量積的運算律及已知條件即可求.【詳解】由題設(shè),可得如下四面體示意圖,則,又,,所以.故答案為:2414、15【解析】先求出二項式展開式的通項公式,然后令的次數(shù)為0,求出的值,從而可得展開式中的常數(shù)項【詳解】二項式展開式的通項公式為,令,得,所以展開式中的常數(shù)項為故答案為:1515、【解析】由已知求得母線長,代入圓錐側(cè)面積公式求解【詳解】由已知可得r=1,h=,則圓錐的母線長l=,∴圓錐的側(cè)面積S=πrl=2π故答案為2π【點睛】本題考查圓錐側(cè)面積的求法,側(cè)面積公式S=πrl.16、①.②.【解析】設(shè),圓半徑為,進而根據(jù)題意得,,進而得其軌跡方程為雙曲線,再根據(jù)雙曲線的定義,將周長轉(zhuǎn)化為求的最小值,進而求解.【詳解】解:如圖1,因為圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,所以,,所以中點,則,,所以,故設(shè),圓半徑為,則,,,所以,即所以圓心的軌跡方程為,表示雙曲線,焦點為,,如圖2,連接,由雙曲線的定義得,即,所以周長為,因為,所以周長的最小值為故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解析】(1)由題意,列出關(guān)于a,b,c的方程組求解即可得答案;(2)設(shè)M(x1,y1),N(x2,y2),線段MN的中點(x0,y0),則,作差可得①,又線段MN的垂直平分線過點A(0,1),則②,聯(lián)立直線MN與橢圓的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式聯(lián)立即可求解【小問1詳解】解:由題意可得,解得,所以橢圓C的方程為,焦點坐標為【小問2詳解】解:設(shè)M(x1,y1),N(x2,y2),線段MN的中點(x0,y0),因為,所以,即,所以①,因為線段MN的垂直平分線過點A(0,1),所以,即②,聯(lián)立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k2>0(*),③,把③代入②,得④,把③④代入①得,所以,即,代入(*)得,解得,又k≠0,所以k的取值范圍為18、(1)證明見解析(2)【解析】(1)利用空間向量求出空間直線的向量積,即可證明兩直線垂直.(2)利用空間向量求直線與平面所成空間角的正弦就是就出平面的法向量與直線的方向向量之間夾角的余弦即可.【小問1詳解】如圖,以為坐標原點,,,所在直線為,,軸,建立空間直角坐標系,則,,,,,因為,,所以,即;【小問2詳解】設(shè)平面的法向量為因為,由,得,令,則所以平面的一個法向量為,又所以故直線與平面所成角的正弦值為19、(1)證明見解析,(2)【解析】(1)題中易得,,利用勾股定理可得,從而可證得線面垂直;(2)以E為原點,EA為x軸,EB為y軸,EP為z軸,建立空間直角坐標系,用空間向量法求線面角的正弦值【詳解】(1)證明:在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點E為棱AD的中點,,,,,,,平面ABCD(2)以E為原點,EA為x軸,EB為y軸,EP為z軸,建立空間直角坐標系,0,,,0,,,,,,設(shè)平面PBC的法向量y,,則,取,得1,,設(shè)直線AB與平面PBC所成角,直線AB與平面PBC所成角的正弦值為:【點睛】本題考查線面垂直的證明,考查空間向量法求線面角.空間角的求法一般都是建立空間直角坐標系,用空間向量法求得空間角20、(1),證明見解析(2)(3)證明見解析【解析】(1)根據(jù)已知條件設(shè)出直線方程及,與拋物線的方程聯(lián)立,利用韋達定理和中點坐標公式,三點共線的性質(zhì)即可求解;(2)根據(jù)已知條件得出,運用韋達定理和弦長公式,可得出直線的斜率;(3)根據(jù)(1)的結(jié)論及求根公式,求得點的坐標,結(jié)合的表達式,結(jié)合圖形可知,由的范圍和的取值即可證明.【小問1詳解】由題意可知,拋物線的焦點為,設(shè)直線的方程為,則,消去,得,,,所以直線的方程為,由因為三點共線,所以,,同理,,,所以,所以.【小問2詳解】因為P、Q是線段MN的三等分點,所以,,,又,,所以,所以,解得或(舍)所以直線AB的斜率為.【小問3詳解】由(1)知,,得,所以,,又,,,,當時,,由圖可知,,而只要,就有,所以當P、Q不是線段MN的三等分點時,以點Q為圓心、線段QO長為半徑的圓Q不可能包圍線段NP21、(1)證明見解析;(2)【解析】(1)根據(jù)題意可判斷出ABCD是正方形,從而可得,再根據(jù),由線面垂直的判定定理可得平面PAC,然后由面面垂直的判定定理即可證出;(2)由、、兩兩垂直可建立空間直角坐標系,利用向量法即可求出直線PC與平面AED所成的角的正弦值.【小問1詳解】因為PA⊥底面ABCD,PA=2AD=4,PC=,所以,,即ABCD是正方形,所以,而PA⊥底面ABCD,所以,又,所以平面PAC,而平面BDE,所以平面BDE⊥平面PAC【小問2詳解】由題可知、、兩兩垂直,建系如圖,,0,,,2,,,0,,,2,,,1,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論