版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆湖北省麻城一中數(shù)學(xué)高二上期末質(zhì)量檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點到準線的距離為()A. B.C. D.2.已知直線的一個方向向量為,則直線的傾斜角為()A. B.C. D.3.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數(shù)學(xué)建模小組為測量塔的高度,獲得了以下數(shù)據(jù):甲同學(xué)在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學(xué)在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m4.等差數(shù)列中,是的前項和,,則()A.40 B.45C.50 D.555.若,則實數(shù)的取值范圍是()A. B.C. D.6.如圖是正方體的平面展開圖,在這個正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個結(jié)論中,正確結(jié)論的序號是A.①②③ B.②④C.③④ D.②③④7.雙曲線的離心率的取值范圍為,則實數(shù)的取值范圍為()A. B.C. D.8.若數(shù)列滿足,則()A.2 B.6C.12 D.209.大數(shù)學(xué)家阿基米德的墓碑上刻有他最引以為豪的數(shù)學(xué)發(fā)現(xiàn)的象征圖——球及其外切圓柱(如圖).以此紀念阿基米德發(fā)現(xiàn)球的體積和表面積,則球的體積和表面積均為其外切圓柱體積和表面積的()A. B.C. D.10.一動圓與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,則動圓圓心軌跡為()A.圓 B.橢圓C.雙曲線的一支 D.拋物線11.已知實數(shù),滿足則的最大值為()A.-1 B.0C.1 D.212.已知函數(shù),其中e是自然數(shù)對數(shù)的底數(shù),若,則實數(shù)a的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖①,用一個平面去截圓錐,得到的截口曲線是橢圓.許多人從純幾何的角度出發(fā)對這個問題進行過研究,其中比利時數(shù)學(xué)家(1794-1847)的方法非常巧妙,極具創(chuàng)造性.在圓錐內(nèi)放兩個大小不同的球,使得它們分別與圓錐的側(cè)面,截面相切,兩個球分別與截面相切于,在截口曲線上任取一點,過作圓錐的母線,分別與兩個球相切于,由球和圓的幾何性質(zhì),可以知道,,于是.由的產(chǎn)生方法可知,它們之間的距離是定值,由橢圓定義可知,截口曲線是以為焦點的橢圓.如圖②,一個半徑為2的球放在桌面上,桌面上方有一個點光源,則球在桌面上的投影是橢圓.已知是橢圓的長軸,垂直于桌面且與球相切,,則橢圓的離心率為___________.14.若,則___________15.底面半徑為1,母線長為2的圓錐的體積為______16.設(shè)、、是三個不同的平面,、是兩條不同的直線,給出下列三個結(jié)論:①若,,則;②若,,則;③若,,則其中,正確結(jié)論的序號為__三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)圓過點A(1,-2),B(-1,4),求:(1)周長最小的圓的方程;(2)圓心在直線2x-y-4=0上的圓的方程18.(12分)已知橢圓C對稱中心在原點,對稱軸為坐標軸,且,兩點(1)求橢圓C的方程;(2)設(shè)M、N分別為橢圓與x軸負半軸、y軸負半軸的交點,P為橢圓上在第一象限內(nèi)一點,直線PM與y軸交于點S,直線PN與x軸交于點T,求證:四邊形MSTN的面積為定值19.(12分)已知二次函數(shù),.(1)若,求函數(shù)的最小值;(2)若,解關(guān)于x的不等式.20.(12分)已知橢圓的離心率為,長軸長為,F(xiàn)為橢圓的右焦點(1)求橢圓C的方程;(2)經(jīng)過點的直線與橢圓C交于兩點,,且以為直徑的圓經(jīng)過原點,求直線的斜率;(3)點是以長軸為直徑的圓上一點,圓在點處的切線交直線于點,求證:過點且垂直于的直線過定點21.(12分)如圖,在長方體中,,,,M為上一點,且(1)求點到平面的距離;(2)求二面角的余弦值22.(10分)新疆長絨棉品質(zhì)優(yōu)良,纖維柔長,被世人譽為“棉中極品”,產(chǎn)于我國新疆的吐魯番盆地、塔里木盆地的阿克蘇、喀什等地.棉花的纖維長度是評價棉花質(zhì)量的重要指標之一,在新疆某地區(qū)成熟的長絨棉中隨機抽測了一批棉花的纖維長度(單位:mm),將樣本數(shù)據(jù)制成頻率分布直方圖如下:(1)求的值;(2)估計該樣本數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值為代表);(3)根據(jù)棉花纖維長度將棉花等級劃分如下:纖維長度小于30mm大于等于30mm,小于40mm大于等于40mm等級二等品一等品特等品從該地區(qū)成熟的棉花中隨機抽測兩根棉花的纖維長度,用樣本的頻率估計概率,求至少有一根棉花纖維長度達到特等品的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)拋物線的幾何性質(zhì)可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.2、A【解析】由直線斜率與方向向量的關(guān)系算出斜率,然后可得.【詳解】記直線的傾斜角為,由題知,又,所以,即.故選:A3、B【解析】設(shè),先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設(shè)塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.4、B【解析】應(yīng)用等差數(shù)列的性質(zhì)“若,則”即可求解【詳解】故選:B5、B【解析】由題意可知且,構(gòu)造函數(shù),可得出,由函數(shù)的單調(diào)性可得出,利用導(dǎo)數(shù)求出函數(shù)的最小值,可得出關(guān)于的不等式,由此可解得實數(shù)的取值范圍.【詳解】因為,則且,由已知可得,構(gòu)造函數(shù),其中,,所以,函數(shù)為上的增函數(shù),由已知,所以,,可得,構(gòu)造函數(shù),其中,則.當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,則,所以,,解得.故選:B.6、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點的分布逐項判斷可得正確的選項.【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯誤,④正確.連接,則為等邊三角形,而,故或其補角為與所成的角,因為,故與所成的角為,故③正確.綜上,正確命題的序號為:③④.故選:C.【點睛】本題考查正方體的平面展開圖,注意展開圖中的點與正方體中的頂點的對應(yīng)關(guān)系,本題屬于容易題.7、C【解析】分析可知,利用雙曲線的離心率公式可得出關(guān)于的不等式,即可解得實數(shù)的取值范圍.【詳解】由題意有,,則,解得:故選:C.8、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D9、C【解析】設(shè)球的半徑為,則圓柱的底面半徑為,高為,分別求出球的體積與表面積,圓柱的體積與表面積,從而得出答案.【詳解】設(shè)球的半徑為,則圓柱的底面半徑為,高為所以球的體積為,表面積為.圓柱的體積為:,所以其體積之比為:圓柱的側(cè)面積為:,圓柱的表面積為:所以其表面積之比為:故選:C10、C【解析】設(shè)動圓圓心,與兩圓x2+y2=1和x2+y2﹣8x+12=0都外切,列出幾何關(guān)系式,化簡,再根據(jù)圓錐曲線的定義,可得到動圓圓心軌跡.【詳解】設(shè)動圓圓心,半徑為,圓x2+y2=1的圓心為,半徑為,圓x2+y2﹣8x+12=0,得,則圓心,半徑為,根據(jù)圓與圓相切,則,,兩式相減得,根據(jù)定義可得動圓圓心軌跡為雙曲線的一支.故選:C【點睛】本題考查了兩圓的位置關(guān)系,圓錐曲線的定義,屬于基礎(chǔ)題.11、D【解析】由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù),即可得到結(jié)果【詳解】由約束條件畫出可行域如圖,化目標函數(shù)為,由圖可知當(dāng)直線過點時,直線在軸上的截距最小,取得最大值2.故選:D12、B【解析】利用函數(shù)的奇偶性將函數(shù)轉(zhuǎn)化為f(M)≤f(N)的形式,再利用單調(diào)性脫去對應(yīng)法則f,轉(zhuǎn)化為一般的二次不等式求解即可【詳解】由于,,則f(﹣x)=﹣x3+e﹣x﹣ex=﹣f(x),故函數(shù)f(x)為奇函數(shù)故原不等式f(a﹣1)+f(2a2)≤0,可轉(zhuǎn)化為f(2a2)≤﹣f(a﹣1)=f(1﹣a),即f(2a2)≤f(1﹣a);又f'(x)=3x2﹣cosx+ex+e﹣x,由于ex+e﹣x≥2,故ex+e﹣x﹣cosx>0,所以f'(x)=3x2﹣cosx+ex+e﹣x≥0恒成立,故函數(shù)f(x)單調(diào)遞增,則由f(2a2)≤f(1﹣a)可得,2a2≤1﹣a,即2a2+a﹣1≤0,解得,故選B【點睛】本題考查了函數(shù)的奇偶性和單調(diào)性的判定及應(yīng)用,考查了不等式的解法,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13、##0.5【解析】利用球與圓錐相切,得出截面,在平面圖形中求解,以及圓錐曲線的來源來理解切點為橢圓的一個焦點,求出,得出離心率.【詳解】設(shè)球切于,切于E,,球半徑為2,所以,,∴,又中,,,故橢圓長軸長為,,根據(jù)橢圓在圓錐中截面與二球相切的切點為橢圓的焦點知:球O與相切的切點為橢圓的一個焦點,且,,橢圓的離心率為.故答案:.14、【解析】先求出函數(shù)的導(dǎo)函數(shù),再求出,即可得出答案.【詳解】解:由,得,則,所以,所以,所以.故答案為:.15、【解析】先由勾股定理求圓錐的高,再結(jié)合圓錐的體積公式運算即可得解.【詳解】解:設(shè)圓錐的高為,由勾股定理可得,由圓錐的體積可得,故答案為.【點睛】本題考查了圓錐的體積公式,重點考查了勾股定理,屬基礎(chǔ)題.16、①②【解析】利用線面垂直的性質(zhì)可判斷命題①、②的正誤;利用特例法可判斷命題③的正誤.綜合可得出結(jié)論.【詳解】、、是三個不同的平面,、是兩條不同的直線.對于①,若,,由同垂直于同一平面的兩直線平行,可得,故①正確;對于②,若,,由同垂直于同一直線的兩平面平行,可得,故②正確;對于③,若,,考慮墻角處的三個平面兩兩垂直,可判斷、相交,則不正確故答案為:①②【點睛】本題考查空間中線面、面面位置關(guān)系有關(guān)命題真假的判斷,考查推理能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)x2+(y-1)2=10;(2)(x-3)2+(y-2)2=20.【解析】(1)根據(jù)當(dāng)AB為直徑時,過A,B的圓的半徑最小進行求解即可;(2)根據(jù)垂徑定理,通過解方程組求出圓心坐標,進而可以求出圓的方程.【詳解】解:(1)當(dāng)AB為直徑時,過A,B的圓的半徑最小,從而周長最小,即AB中點(0,1)為圓心,半徑r=|AB|=.故圓的方程為x2+(y-1)2=10;(2)由于AB的斜率為k=-3,則AB的垂直平分線的斜率為,AB的垂直平分線的方程是y-1=x,即x-3y+3=0.由解得即圓心坐標是C(3,2)又r=|AC|==2.所以圓的方程是(x-3)2+(y-2)2=20.18、(1)(2)證明見解析【解析】(1)設(shè)橢圓方程為,利用待定系數(shù)法求得的值,即可得出答案;(2)設(shè),,,易得,分別求出直線PM和直線PN的方程,從而可求出的坐標,再根據(jù)即可得出答案.【小問1詳解】解:依題意設(shè)橢圓方程為,將,代入得,解得得,,∴所求橢圓方程為;【小問2詳解】證明:設(shè),,,,P點坐標滿足,即,直線PM:,可得,直線PN:,可得,.19、(1)(2)當(dāng)時,不等式的解集為當(dāng)時,不等式的解集為當(dāng)時,不等式的解集為【解析】(1)帶入,將化解為,再利用基本不等式求最值即可;(2)將不等式移項整理為,再對a分類討論,比較兩根的大小,即可求得解集.【小問1詳解】當(dāng)a=3時,函數(shù)可整理為,因為,所以利用基本不等式,當(dāng)且僅當(dāng),即時,y取到最小值.所以,當(dāng)時,函數(shù)的最小值為.【小問2詳解】將不等式整理為,令,即,解得兩根為與1,因為,當(dāng)時,即時,此時的解集為;當(dāng)時,即時,此時的解集為;當(dāng)時,即時,此時的解集為.綜上所述,當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為;當(dāng)時,不等式的解集為.20、(1);(2);(3).【解析】(1)由題意中離心率和長軸長可求出,即可求出橢圓方程.(2)設(shè)出與的坐標即直線的方程,把直線與橢圓方程進行聯(lián)立寫出韋達定理,由題意以為直徑圓經(jīng)過原點可得,化簡即可求出直線的斜率.(3)由題意可得圓的方程,設(shè),由和直線的方程化簡,即可得到答案.【小問1詳解】,,橢圓C的方程為.【小問2詳解】由題意知直線的斜率存在且不為0,設(shè)直線的方程為.設(shè).把直線的方程與橢圓的方程進行聯(lián)立得:..由以為直徑圓經(jīng)過原點知,..經(jīng)檢驗,滿足,所以.【小問3詳解】由題意可得圓的方程為,設(shè),由得.①.當(dāng)時,,直線的方程為.直線過橢圓的右焦點.當(dāng)時,直線的斜率為且過,②把①代入②中得.故直線過橢圓的右焦點.綜上所述,直線過橢圓的右焦點.21、(1)(2)【解析】(1)以A為原點,以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系,利用空間向量求解,(2)求出和的法向量,利用空間向量求解【小問1詳解】以A為原點,以AB、AD、所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系由,,,,所以,,,因此,,,設(shè)平面的法向量,則,,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高一化學(xué)鞏固練習(xí):配制一定物質(zhì)的量濃度的溶液基礎(chǔ)
- 2024高中地理第2章區(qū)域可持續(xù)發(fā)展第3節(jié)流域綜合治理與開發(fā)-以田納西河流域為例學(xué)案湘教版必修3
- 2024高中語文第5單元莊子蚜第4課尊生練習(xí)含解析新人教版選修先秦諸子蚜
- 2024高考化學(xué)一輪復(fù)習(xí)專練34金屬的腐蝕與防護含解析新人教版
- 2024高考化學(xué)一輪復(fù)習(xí)第一部分考點22化學(xué)反應(yīng)速率及其影響因素強化訓(xùn)練含解析
- 2024高考化學(xué)一輪復(fù)習(xí)課練24化學(xué)平衡常數(shù)轉(zhuǎn)化率及相關(guān)計算含解析
- 2024高考歷史一輪復(fù)習(xí)第20講經(jīng)濟大危機羅斯福新政與當(dāng)代資本主義的新變化學(xué)案含解析人民版
- 2024高考地理一輪復(fù)習(xí)第二部分人文地理-重在運用第五章交通運輸布局及其影響第25講交通運輸方式和布局變化的影響學(xué)案新人教版
- 小學(xué)2024-2025學(xué)年度工作計劃和重點工作任務(wù)
- 二零二五年度白酒產(chǎn)業(yè)園區(qū)建設(shè)與運營合同3篇
- 物理期末考試成績分析總結(jié)
- 屋頂花園 施工方案
- 如何高效學(xué)習(xí)學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 【航空個性化服務(wù)淺析4700字(論文)】
- 《巧擦黑板》(教案)-一年級下冊勞動浙教版
- 腫瘤-實驗四腫瘤(病理學(xué)課件)
- 化工廠施工安全質(zhì)量冬季施工措施
- 亞洲杯足球比賽應(yīng)急預(yù)案
- 北京市人工智能產(chǎn)業(yè)發(fā)展建議
- 2023-2024學(xué)年廣西壯族自治區(qū)玉林市小學(xué)語文一年級期末評估測試題詳細參考答案解析
- 青少年自殺自傷行為預(yù)防與干預(yù)專家講座
評論
0/150
提交評論