版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2.2.LinearTime-InvariantSystems(WHYAbasicfact:IfweknowtheresponseofanLTItosomeinputs,weactuallyknowtheresponsetomanyKeypointsofSignalsdecomposition:basicsignalCHAPTERLinearTime- ResponseResponsesynthesis:basicresponse(impulse2.2.LinearTime-InvariantSystems(WHYAbasicfact:IfweknowtheresponseofanLTItosomeinputs,weactuallyknowtheresponsetomanyKeypointsofSignalsdecomposition:basicsignalResponseResponsesynthesis:basicresponse(impulse2.12.1Discrete-timeLTIsystem:TheconvolutionTheRepresentationofDiscrete-timeSignalsinTermsofImpulses2.12.1Discrete-timeLTIsystem:TheconvolutionTheRepresentationofDiscrete-timeSignalsinTermsofImpulses.1Decompositionofadiscrete-timesignalintoaweightedsumofshifted/.1Decompositionofadiscrete-timesignalintoaweightedsumofshiftedIfx[n]=u[n],x[n][nkkx[n]x[k][nk]k
TheDiscrete-timeUnitImpulseResponseandtheConvolutionSumRepresentationofLTISystems(1)UnitImpulse(Sample)UnitUnitimpulseTheDiscrete-timeUnitImpulseResponseandtheConvolutionSumRepresentationofLTISystemsUnitImpulse(Sample)UnitUnitimpulseGivenGiventheUnitImpulseResponse:
IFn h
[n-k]
x[k][n-k]∑x[k][n-k]
x[n]
GivenGiventheUnitImpulseResponse:IFd h
i i i
i UnitimpulseUnitimpulse
x[n]
x[k][nk
k
y[n]
x[k kk ¥
¥x[n]¥
n¥
kFigure
y[n]x[1]h1[n]x[0]h0[n]Figure Example2.1(InExample2.1(Ingraphic21 01234 01234nnn
+
222
2[n2[n
2y[n]x[0]h0[n]2y[n]x[0]h0[n] 134n2 Ifx[n],h[n]isy[n]x[k]h[nk]kConvolution y[n]=x[n]*(3)CalculationofConvolution Independentvariablereplace:x[n]x[k],h[n]h[k]Four
TimeInversalTimeShifth[k]h[-k]h[n-Multiplication:
y[n]
k
k +
2
ExampleExampleExampleExampleCalculationofConvolutionExampleConvolutionSumofLTIInput:Input:x[n]x[k]kk]Output:y[n]=y[n]x[k]h[nk
kIfx[n],h[n]isIfx[n],h[n]isConvolutiony[n]=x[n]*Independentvariable x[k],h[n] TimeInversalTimeShift:Four
+
2.2Continuous-timeLTI2.2Continuous-timeLTIh(t)is2.2.1TheRepresentationofContinuous-timeSignalsinTermsofImpulses δ(t(t)(t)(t),0t1t0ExampleExampleExampleExampleCalculationofConvolutionExampleConvolutionSumofLTI¥ ?(t)?(t)kTheconvolutionh(t)is2.2.1TheRepresentationofContinuous-timeSignalsinTermsofImpulses δ(td(t)=,0£t£D1fiD0………x(t)limx(k)(t0kx(t)x( WehavetheInInanother
x(t)
x(t)
x(t)x(t)
x(t)
isactuallyasumofdelayedx(t),u(t)x()(t01(ttt(
222Th nin -timeUnitimpulseResponseandtheconvolutionIntegralRepresentationofLTISystems1UnitImulseResxt= TheConvolutionofLTIInInanother¥ ¥
x(t)=
¥=x(t)¥=
d(t-x(t)isactuallyasumofdelayedxx(t)=,u(t)=¥==1d(t-¥0=t()d h(t)limh(t)limh(t)
(t)??
k)
x(tx(t)x(k)k(tkkk(t
x(k)response{
t =
?t
?tx(t)
y(t)
)h(t )d(Input:Sumofunit (Output:Sumofunitimpulses222Th nin -timeUnitimpulseResponseandtheconvolutionIntegralRepresentationofLTISystems1UnitImulseResxt=d (2)TheConvolutionofLTIDDD)d(t)=limdDh(t)=limhDfiDDfidhdD(t)fihDdhdD(t-kD)fihD(t-? ?(t)Becausex(t)x()(tWecany(t)x()h(t y(t)=x(t)* (ConvolutionIntegral Dfi
?t)fiDfi
?tx(t)
x(t)d(t-t)dty(t)=-¥x()h(t-(Input:Sumofunit(3)CalculationofConvolution(3)CalculationofConvolutionFour
(-)h(-TimeShift:(t-)h(t- x()h(t-
y(t)
Independentvariable
,h(t)
Transformationofin
h(-
h(t- x()h(t-tIntegral
y(t)
)h(t )d (Output:Sumofunitimpulses
01
)
ExampleExample (SimilartoExample 1
t
y(t)0d
ea,0
t 1
y(t)ea0
aExample (Anothersolutiony(t)x(t)*h(t)eatu(t)*u(t),aeau(
x(t
h(t [ea0
1a
Because
Wecan y(t)=-¥x()h(t- y(t)=x(t)*Example2.7(Calculateitbyyourself!)(SimilartoExample2.4)Example2.8(Calculateitbyyourself!)(SimilartoExample2.5)ExperimentExperimentdemonstrationforConvolutionIntegral(3)(3)CalculationofConvolutionFour
Inverse:d(- fih(-TimeShift:d(t- fih(t- -
y(t)=-
Independentvariable fiTransformationoftin fih(t-(Input:SumofunitOutut:SumofunitimulseresD-
x[n]
k
k
y[n]
k
ky[n]=x[n]*ConvolutionC-x(t)
y(t)
y(t)=x(t)*// tIntegral
y(t)
x()h(t- Four
Independentvariablereplace:x[n]x[k],h[n]h[k]TimeInversalTimeShift:h[k]h[-k]h[n-k]CalculationofConvolutionSum/ConvolutionCalculationofConvolutionSum/Convolution
y[n]
kFour
Independentx(t)x(),h(t)h()Transformationofinh():h()h(-)h(t- x()h(t-
y(t)
)d
01
t
01
¥ -¥<t<¥,t< y(t)=0dt=
t> [n]x[n]x[n][n]h[n]
k]
—C-A[nk]x[n]Ax[nk(t)h(t)h(t(t
)h(t)
h(t
(t)x(t)x(t(t)x(t)x(t
y(t)
e-atdt=(1-e-ata0aConvergenceConvergenceofu[n]u[n]
Notu[n]1
u[n]{u[n1]u[n]}
?NotC-u(t)u(t)
?Notu(t)1
u(t)
u(t)}
?NotExample (Anothersolutiony(t)=x(t)*h(t)=e-atu(t)*u(t),a>¥ x()t=[e-01
h(t- a2.32.3PropertiesofLTIOutputResponseofLTIy[n]=x[n]y[n]=x[n]y[n]x[n]*h[n]x[k]h[nk y(t)=x(t)Convolution forLTIsItsoutputresponsecanbeobtainedbyconvolutionItcanbecompletelycharacterizedbyitsUnitImpulsey(t)
x(t)*h(t)
2.3.12.3.1TheCommutativeDiscrete x[n]*h[n]=h[n]Continuoustime:x(t)*h(t) h(t)Howtoh y(t)=x(t)hy(t)=h(t)Example2.7(Calculateitbyyourself!)(SimilartoExample2.4)Example2.8(Calculateitbyyourself!)(SimilartoExample2.5)ExperimentExperimentdemonstrationforConvolutionIntegralTheDistributiveProDiscretex[n]*{h1[n]+h2[n]}=x[n]*h1[n]+x[n]*h2[n]Continuoustime:x(t)*{h1(t)+h2(t)}=x(t)*h1(t)+x(t)y(t)=x(t)y(t)=x(t)y(t)=x(t)y(t)=x(t)*h1(t)+x(t)x(Input:SumofunitOutut:Sumofunitimulseres x[n]=
LTIy[n]=
x(t)
y[n]=x[n]*ConvolutionIy(t)=+¥x(t)h(t-y(t)=x(t)*ConvolutionExampleExamplex[n]
(12
u[n]
2nu[n],h[n]
n )u[n]n
x2[n]
y[n]
(1[n
x2[n])*y[n]
y2[n]Example2.3Exampley1[n]x1[n]*y2[n]x2[n]*
Independentvariablereplace: fix[k],h[n] fih[k]TimeInversalTimeShift: fih[-k] fih[n-k] + Four
fix(t),h(t) Transformationoftinh(t): fih(-t) fih(t- x(t)h(t-t)TheAssociativeProDiscretex[n]*{h1[n]
Continuous
*{1(t)
2(t)}={x(t)
1(t)}
Howy(t)=x(t)*{h1(t)y(t)=x(t)*h1(t)h1(t)
Integrating:y(t)=-
LTIsstemwithandwithoutMemorylessDiscretetime: y[n]=kx[n],h[n]=k[n]Continuoustime:y(t)=kx(t),h(t)=k(t)x(t)y(x(t)y(t)kx(t)x(t)k(t)(t)kImplythat:x(t)*(t)=x(t)andx[n]
y[n]
kx[n]
x[n]k
(t)*h(t)=h(tAd[n-k]*x[n]=Ax[n-k(t-)*h(t)=h(t-C-C-
d(t)*x(t)=x(t2.3.52.3.5ofLTIsOriginalsystem:Reversesystem:h(t)xh(t)
x(t)
x(t)(t)x(t)(t)So,fortheinvertibleh(t)*h1(t)=(t)orh[n]d(t-t)*x(t)=x(t-t)h(t)h(t)(tt0
t0yy(t)x(t) (tt0)x(tt0
t0)1t
h1(t)
(tt0
ConvergenceConvergenceofu[n]*u[-n]= Notu[n]*1=u[n]*{u[n-1]+u[-n]}=?Notu(t)*u(-t)=?Notu(t)*1=u(t)*{u(t)+u(-t)}=?Not
ififh[n]h1[n][n]u[n]u[nu[n]{[n][n[n][nExample2.12(Example2.12(累加器y[n]x[k]u[nk]kx[k]1x[k]nku[nk]ku[nkkn
2.32.3PropertiesofLTIOutputResponseofLTI y(t)=x(t)Convolutiony(t)=x(t)*h(t)=-¥x(t)h(t-
u(t)yy(t)x(t)u(t)ttt(t)du(t)(t(t)du(t)(ty(t)1
u(t)
(t)
1t Example積分器Example積分器
2.3.12.3.1TheCommutative x[n]*h[n]=h[n]Continuoustime:x(t)*h(t) h(t)Howto y(t)=x(t)y(t)=h(t)x[k]u[nx[k]u[nk]kDiscretetimesystemsatisfythecondition:h[n]=0forn<0Continuoustimesystemsatisfythecondition:y[n] h[n]=0for TheDistributiveProDiscretex[n]*{h1[n]+h2[n]}=x[n]*h1[n]+x[n]*h2[n]Continuoustime:x(t)*{h1(t)+h2(t)}=x(t)*h1(t)+x(t)Howtoxxh1y(t)=x(t)*h1(t)+x(t)2.3.72.3.7StabilityforLTIDefinitionofstability:Everyboundedinputproducesaboundedoutput.Discretetime y[n]
k
x[
]h[n
k]
or
k
x[n
k]h[k |y[n]
|
k]
B|
|
|y[n]|Example1Examplex[n]=(21
y[n]=([n+x2[n])*Example2.3ExampleIfIf|x[n]|<B,theconditionfor|y[n]|<A|k
isstable y(t)
,
,
)h(y2[n]=x2[n]*|y(t)
)
B
)|
|y(t)|If|x(t)|<B,theconditionfor|y(t)|<A|h()|disTheAssociativeProDiscretex[n]*{h1[n]*h2[n]}={x[n]*h1[n]}Continuousx(t)*{1(t)*2(t)}={x(t)*1(t)}*HowtoProveh1(t)y(t)=x(t)*{h1(t)y(t)=x(t)*h1(t)ExampleExamplePuretimeshift y[n]
y(t)
t0
h(t)
t0Note:(2.89)shouldnotbecommonlyn
kt
y(t)
h(t)
u(t)LTIsstemwithandwithoutMemorylessDiscretetime: Continuoustime:y(t)=kx(t),h(t)=kd(t) forProertiesofLTIDiscrete Continuous(1)x[n]*h[n]=h[n] x(t)*h(t) h(t)2xn*{h1n+h2 x(t)
h(t)=k|h[k]|k|h()|d
h[n]=0forn<0h[n]*h1[n]=[n]
h(t)=0fort<0h(t)*h1(t)=(t)2.3.52.3.5ofLTIsOriginalsystem:Reversesystem: x(t)
So,fortheinvertibleh(t)*h1(t)=d(t)orh[n]TypicalTypicalLTISystemanditsUnitImpulseDiscrete Continuous
Identityht=
x[n][n]
y(t)
x(t)(t)
Gain y[n]
x[n]K[n]
y(t)
x(t)
(t)
yy[n]x[n][nn]x[nn00y(t)x(t)(tt)x(tt y(t)=x(t-t0yy(t)=x(t)*(t-t0)=x(t-t0 h(t)*h1(t)= =d(t-t0)*1t= =y[n]
x[n]h[n]
x[knkn
y(t)
x(t)h(t)
t1storder 1storderth[n]=[n]-[n- x[n]([n][nx[n]x[ny(t)x(t)d(t)dx(t)(t+t0 s[n]u[n]Unitstepresponses[n]h[n]2.3.8TheUnitResonseofLTIsD-Unitimpulses(t)u(t)h(t)h(t)u(t)ifh[n]*h1[n]=x[k]1+x[k]u[n-k]k[n] RelationshipRelationshipbetweenh[n]andD-
s[n]
nkn
h(1)[n],
s[n]
s[n]
tC-ts(t)
h(
h
(t), h(t)
s h(t)=yy(t)=x(t) h(t)*h1(t)= d(t)=y(d(t)=y(t==2.3.9ConvolutioninteralwithSinularit(1)x(t)* xx
*
t0)
t0x
t
x
x(t)*
'(t)
(5)(5)x(t)*u x(1) tx(6)x(t)*h(t)x'(t)h(1)(t) Proofxt)
h(t)
x(t)
h(t)
u(t)
'(t)[x(t)
'(t)][h(t)
u(t)]'x(t)'
(t)2.3.6 forLTIsDiscretetimesystemsatisfythecondition:h[n]=0forn<0Continuoustimesystemsatisfythecondition:
h[n]=0forhh(t)u(t)u(th(t)1x(t)110t1t101
y(t)
x( )d2.3.72.3.7StabilityforLTIDefinitionofstability:Everyboundedinputproducesaboundedoutput.Discretetime y[n]=x[k]h[n-k],or,x[n-k]h[kk=- k=-
|y[n]
|
x[n-k]||h[k]|<B
②Usingthepropertiesof(t)
h'(t) 2 011
1 h'(t)
(t)
2 y(t)
x(1)
x(1)
1
y(t)t1t1
x(1)(t)t1
x(1)
1)
1
1
|
|y[n]|<ConvolutionConvolutionIfIf|x[n]|<B,theconditionfor|y[n]|<A|
isstable y(t)=-¥x(t)h(t-t)dt,or,-¥x(t-Convolution|y(t)
-¥|h()| |y(t)|<If|x(t)|<B,theconditionfor|y(t)|<ADiscrete Continuousy[n]x[n]y[kn]x[kn]y[nn0]x[nn0]
y(t)x(t)h(t)y(kt)x(kt)h(t)y(tt0)x(tt0)h(t)x(t)h(t)y(tx(tt)h(tt)y(t2t000x(kt)h(kt)1y(ktk
isstableKeKewordsforChaterUnitImpulsePuretimeshift y(t)=x(t-t0 h(t)=d(t-t0Note:(2.89)should
tbecommonly
y[n]=t
CausalLTISystemsDescribedbyLinearConstant-CoefficientDifferentialandDifferenceNMDiscretetimesystem:DifferenceNMk
k]
bkk
k Continuoustimesystem: NNdky(t)dtkkdxkdtk ConstantHowtogetoutputoftheLTIsystemlikey(t)
x(tt
h(u(t))LinearConstant-CoefficientDifferenceAgeneralNth-orderlinearconstant-coefficientdifferenceNN
k]
bkMM
k RecursiveaNy[nN]aN1y[n(N
L
a0
(M1)]L
initialy[-1],……,y[-(N- (Nvalues forProertiesofLTIDiscrete Continuous(1)x[n]*h[n]=h[n]*x[n] x(t)*h(t)= h(t)*x(t)2xn*{h1n+h2n x(t)*{h1(t)+h2(t)} h(t)=k
h[n]=0forn<0
h(t)=0fort<0
y[n]
x[nkMk0M
a0 Nonrecursivennh[n]
0n FiniteImpulse
bkMM
k]
NN
k]Recursive
Determinethesystemresponse(output)recursivelyTypicalLTISystemanditsUnitImpulseDiscrete ContinuousIdentity ht=d Gain y(t)=x(t)* (t)=Time sConditionConditionoInitialResty[n]=x[n]*h[n]=x[k
y(t)=x(t)*h(t)=
yy(t)=x(t)*dd(t)=(ConditionofInitialAlinearsystemiscausalifandonlyifitsatisfiestheconditionofinitialrest:x(n)ny(n)nSupposesystemiscausal.Showthat(*)Suppose(*)holds.Showthatthesystemis2.3.82.3.8TheUnitResonseofLTIsD-Unitimpulses(t)=u(t)*h(t)=h(t)ExampleExampleThey[nThey[n]1y[n1]x[n]x[n]K[n]Recursiveequationy[n]Initialcondition
x[n]2
x(n)
n(ConditionofInitial
y(n)
nRelationshipRelationshipbetweenh[n]andnD- s[n]=n
h[k]=h(-1)[n],tth()dt=h-1(t), h(t)=ss(t)=-n
y(n)n
x[0]2
n
2
y[0]12n
x[2]2M
2
x[n]2
(1)n2
K[n]
y[n]
(1)n2
Theimpulse
(1)2
nfiniteImpulseResponse
Recursive
bk
k]
k]InfiniteImpulseResponse Nonrecursivey[n]
Mk0M
kFiniteImpulse 2.3.9ConvolutioninteralwithSinularitx(t)*d =x xt*d(t-t0)=x(t-t0 xt- =xt-t1- x(t)*d'(t)=x2.4.22.4.2LinearConstant-CoefficientDifferentialAgeneralNth-orderlinearconstant-coefficientdifferential d
y(t)
(t)
dtk
bk
dtkN y(N)(t)N
aN
y(N1)(t)L
a1y'(t)
a0y(t)
x(M)(t)
x(M1)(t)L
x'(t)
x(t)M1andM1y(t0),y’(t0),……,y(N- (Nvaluesxxt(5)(5)x(t)*u=x(-1)(6)x(t)*h(t)=x'(t)*h(-1)SolutionoftheN-thorderlinearconstantcoefficientyy(t)1a0Mk0y(t)y(t)y*(t)
Proofxt)h(t)=x(t)*h(t)*u(t)*d'=[x(t)*'(t)]*[h(t)*u(t)]'=x(t)h(1)(t)'HowHowtogettheHomogeneous y(t)SolvethehomogeneousdifferentialNk Nk
y(t)k
RootsofthecharacteristicNakki(i1,2,L,Nh(th(t)=u(t)-u(t-1t11x(t)0
y(t)
x()h(t-HowtogettheParticular
y*
isdependantonboththeexcitationsign andthesystembehavior.y*h'(t) 2 1 h'(t)=d(t)-d(t-t112y(t)=x(-1)(t)-x(-1)(t-t121
y(t)1
x(-1)ttt -x(-1)(t-1) 21Example①GettheHomogeneous
y(t)②Gettheparticular
y(t)
y(t)
Auxiliaryconditiontodeterminecomleteltheinput-outputrelationship–Initialrest.LTI
x(t0)y(t0)
tt0tt00(ConditionofInitial0y(t0)
y(t0)
y(t0
L
y(N1)(t)21Systemyy(t)y(t)y*(t)NaturalForcedGeneralresponse=Zero-state+Zero-Input=Generalresponse=Zero-state+Zero-Input=Forced+NaturalConvolutionConvolution.. .. BlockDiagramRepresentationsofFirst-orderSystemsDescribedbyDifferentialandDifferenceEquationDiscretetimesystem:DifferenceNNk
bkMkM
BasicelementsforadiscretetimesystemAnMultiplicationbyaC.Anunit ConvolutionBasicMultiplicationMultiplicationbyaaUnitDiscrete Continuous
y(-t)?x(-t)*h(t)y(kt)?x(kt)*h(t)y(t-t0)=x(t-t0)x(-t)*h(-t)=y(-tx(kt)*h(kt)=1y(ktk x(t-t)*h(t-t)=y(t-2t) y[n]+ay[n-KeKewordsforChaterContinuoustime d
y(t)
(t)
dtk
bk
dtkBasicAnMultiplicationbyaAn(differentiator)CausalLTISystemsDescribedbyLinearConstant-CoefficientDifferentialandDifferenceDiscretetimesystem:Difference k
k
Continuoustimesystem:Differential BasicBasicMultiplicationMultiplicationbyax(t)ax(t)aNNkdxk(ConstantHowtogetoutputoftheLTIsystemlike
y(t)
ay(t)
bx(t)LinearConstant-CoefficientDifference k
k
RecursiveaNy[n-N]+aN-1y[n-(N-1)]+L+a1y[n-1]+a0 (M-1)]+L+ initialReviewReviewforChaptersystemUnitImpulseConvolutionLTIsystemDescribedbyLinearConstant-CoefficientDifferenceandDifferentialEquation(LCCDE)
(ConditionofInitialBlockDiagramy[-1],……,y[-(N- (NvaluesReviewfory[n]=x[n]Reviewfory[n]=x[n]y(t)=x(t)x[n]x[n]x[k][nkkResponsey[n]x[k]h[nkx(t)x()(ty(t)x()h(tk
x[n-kMk=0 Nonrecursiveh[n]
0£n£ FiniteImpulse N≥1:y[n]=k
k
x(t)
y(t)
x(t)*h(t)y[n]
x[n]* (t1,t2
[N1,
N2
(t3,t4
[N3
N4
(t1t3,
t4[N1
N3,N2N4Causal(right- two-sideornotes1t,tz0,nnes2tu(t)1es1t,Re[s]]s1z1zn, 200Recursive
Determinethesystemresponse(output)recursivelyPropertiesPropertiesofLTIDiscrete Continuous(1)x[n]*h[n]=h[n] x(t)*h(t) h(t)2xn*{h1n+h2 x(t)
h(t)=k |h[k]|k|h()|d
h[n]=0forn<0h[n]*h1[n]=[n]
h(t)=0fort<0h(t)*h1(t)=(t)ConditionConditionoInitialRestSolutionSolutionforDifferenceRecursiveequationyy[n]x[n]1y[n2Initialcondition
=(ConditionofInitial x(n)
n
y(n)
n(ConditionofInitialx(n)=n<y(n)=x(n)=n<y(n)=n<Supposesystemiscausal.Showthat(*)Suppose(*)holds.ShowthatthesystemisHomeworkHomeworkforChapterPartI(卷積和2.3,2.5,PartII(卷積積分):2.10(a),Part 2.1,2.25(b),PartIV(差分方程求解 , , 入理解ExampleExampleRecursiveequationInitialcondition
2
y[n-(LTI, x(n)= n<(ConditionofInitial y(n)= n<n< y(n)=n=0 n=1
y[0]=121n= 2M
1)222 2
nn1 y[n]=()n2
Theimpulse
2
nfiniteImpulseResponse Recursive k
k
InfiniteImpulseResponse M x[n-kMk=0FiniteImpulseResponse2.4.22.4.2LinearConstant-CoefficientDifferentialcofficientdiffrential dk
dx
=dtdt
dtkaNy(N)(t)+ y(N-1)(t)+L+a1y'(t)+a0=bMx(M)(t)+ x(M-1)(t)+L+bx'(t)+b0 andinitialy(t0),y’(t0),……,y(N- (NvaluesSolutionoftheN-thorderlin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024工程裝飾合同范本
- 2024彩鋼瓦安裝合同
- 數(shù)字化農(nóng)業(yè)技術(shù)選型與應(yīng)用中的注意事項(xiàng)
- 普外科常見應(yīng)急演練
- 西安電子科技大學(xué)《編譯原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024影視拍攝合同范文
- 建筑施工中的交通安全與交通組織措施考核試卷
- 廣告與社交媒體市場營銷考核試卷
- 小學(xué)生女生安全心理教育
- 交通運(yùn)輸?shù)目沙掷m(xù)發(fā)展模式與路徑考核試卷
- 液化石油氣站安全隱患檢查記錄表
- 《頸椎病病人的護(hù)理》PPT課件(完整版)
- 兩票三制培訓(xùn).
- 醫(yī)院藥品儲(chǔ)備定期評價(jià)分析報(bào)告及改進(jìn)措施
- 教練技術(shù)一階段講義
- 廣州供電局輸電部高壓電纜運(yùn)行工作介紹
- 實(shí)驗(yàn)室審核檢查表參照模板
- 三年級上冊語文課程綱要.doc
- 做新時(shí)代好隊(duì)員競選小隊(duì)長演示PPT課件
- Linux網(wǎng)絡(luò)管理
- 生命成長,責(zé)任擔(dān)當(dāng)——主題班會(huì)(共26張PPT)
評論
0/150
提交評論