加權(quán)算術(shù)平均數(shù)值_第1頁(yè)
加權(quán)算術(shù)平均數(shù)值_第2頁(yè)
加權(quán)算術(shù)平均數(shù)值_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

加權(quán)算術(shù)平均數(shù)加權(quán)算術(shù)平均數(shù)(WeightedArithmeticMean)[編輯]什么是加權(quán)算術(shù)平均數(shù)加權(quán)算術(shù)平均數(shù)是具有不同比重的數(shù)據(jù)(或平均數(shù))的算術(shù)平均數(shù)比重也稱為權(quán)重,數(shù)據(jù)的權(quán)重反映了該變量在總體中的相對(duì)重要性,每種變量的權(quán)重的確定與一定的理論經(jīng)驗(yàn)或變量在總體中的比重有關(guān)。依據(jù)各個(gè)數(shù)據(jù)的重要性系數(shù)(即權(quán)重)進(jìn)行相乘后再相加求和,就是加權(quán)和。加權(quán)和與所有權(quán)重之和的比等于加權(quán)算術(shù)平均數(shù)。加權(quán)算術(shù)平均數(shù)主要用于原始資料已經(jīng)分組,并得出次數(shù)分布的條件。[編輯]加權(quán)算術(shù)平均數(shù)的計(jì)算根據(jù)分組整理的數(shù)據(jù)計(jì)算的算術(shù)平均數(shù)。其計(jì)算公式為:_I血胃IAI E-r/個(gè) hIhIAI打~£/式中:f代表各組變量值出現(xiàn)的頻數(shù)例:以下表為例,計(jì)算人均日產(chǎn)量。某企業(yè)50名工人加工零件均值計(jì)算表按零件數(shù)分組組中值x頻數(shù)fxf105?110107.53322.5110?115112.55562.5115?120117.58940.0120?125122.5141715.0125?130127.5101275.0130?135132.56795.0

135?140137.54550.0合計(jì)—506160.0解:平均日產(chǎn)量=一- '四=颯=123.2(件)這種根據(jù)已分組整理的數(shù)據(jù)計(jì)算的算術(shù)平均數(shù)就稱為加權(quán)算術(shù)平均數(shù)。這時(shí),算術(shù)平均數(shù)的大小,不僅取決于研究對(duì)象的變量值,而且受各變量值重復(fù)出現(xiàn)的頻數(shù)(f)或頻率(f/£f解:平均日產(chǎn)量=一- '四=颯=123.2(件)當(dāng)然,利用組中值作為本組平均值計(jì)算算術(shù)平均數(shù),是在各組內(nèi)的標(biāo)志值分布均勻的假定下。計(jì)算結(jié)果與未分組數(shù)列的相應(yīng)結(jié)果可能會(huì)有一些偏差,應(yīng)用時(shí)應(yīng)予以注意。在統(tǒng)計(jì)分析過(guò)程中,如果搜集到的是經(jīng)過(guò)初步整理的次級(jí)數(shù)據(jù),或數(shù)據(jù)要求不很精確的原始數(shù)據(jù)資料可用此法計(jì)算均值。如果要求結(jié)果十分精確,那么需用原始數(shù)據(jù)的全部實(shí)際信息,如果計(jì)算量很大,可借助計(jì)算機(jī)的統(tǒng)計(jì)功能。如果是計(jì)算相對(duì)數(shù)的平均數(shù),則應(yīng)符合所求的相對(duì)數(shù)本身的公式,將分子視為總體標(biāo)志總量分母視為總體單位總量例:某季度某工業(yè)公司18個(gè)工業(yè)企業(yè)產(chǎn)值計(jì)劃完成程序資料如下表,計(jì)算平均產(chǎn)值計(jì)劃完成程度。某工業(yè)公司產(chǎn)值完成情況表產(chǎn)值計(jì)劃完成程度(%)組中值(%)x企業(yè)數(shù)(個(gè))計(jì)劃產(chǎn)值(萬(wàn)元)f實(shí)際產(chǎn)值(萬(wàn)元)xf80?9085280068090?10095325002375100?110105101720018060110?120115344005060合計(jì)-182490026175

計(jì)劃完成相對(duì)數(shù)的計(jì)算公式是實(shí)際完成數(shù)與計(jì)劃任務(wù)數(shù)之比,因此,平均計(jì)劃完成程度的計(jì)算只能是所有企業(yè)的實(shí)際完成數(shù)與其計(jì)劃任務(wù)數(shù)之比,不能把各個(gè)企業(yè)的計(jì)劃完成百分?jǐn)?shù)簡(jiǎn)單平均。你一個(gè)例子:學(xué)生有五項(xiàng)條件都具有一定的模糊性,評(píng)價(jià)分為A,B,C,D四個(gè)等級(jí),即構(gòu)成模糊集U={u1,u2,u3,u4},不妨設(shè)相應(yīng)的評(píng)語(yǔ)集為{很好,好,較好,差},對(duì)應(yīng)的數(shù)值為{5,4,3,2}.柯西分布柯西分布根據(jù)實(shí)際情況取偏大型柯西分布隸屬函數(shù)如下:[1+A(x-B)A(-2)]N-1),1<x<3f(x)=(alnx+b,3<x<5希望對(duì)你有幫助??挛鞣植伎挛鞣植季庉嬁挛鞣植际且粋€(gè)數(shù)學(xué)期望不存在的連續(xù)型分布函數(shù),它同樣具有自己的分布密度,滿分布函數(shù)F(X)=1/2+1/n*arctanx,-8<x<+8密度函數(shù)中(x)=1/[n(1+xA2)],-8<x<+8的稱為標(biāo)準(zhǔn)柯西分布。柯西分布英文名稱:Cauchydistribution是因大數(shù)學(xué)家柯西(Cauchy)而命名,記為C(0,a)。對(duì)X有柯西分布C(0,a),令Y=(X-0)/a,則稱Y有C(0,1)分布。對(duì)于C(0,1)分布稱為標(biāo)準(zhǔn)的柯西分布。正態(tài)分布也有類似的性質(zhì)。柯西分布的重要特性之一就是期望和方差均不存在。柯西分布有兩個(gè)參數(shù)。、a,概率密度函數(shù)p.d.f.的圖形亦為鐘形,不仔

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論