版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
CHAPTERWritingSystem ByHuiWangOutlineofthischapterBasicLinearMatrixAlgebra&StateMechanicalRotationalThermalHydraulicLinearLiquid-Level AnalogousExamplethesystemshowninnode f=fK=K(xa-xb)node fK=fM+fB=MD2
Node i=v
If
NodeNodei= +12=b+vbRi=xbDxRComparingagain!!Find55KMB(b)CorrespondingmechanicalKMB(b)CorrespondingmechanicalAnalogouscircuitsrepresentsystemsforwhichthedifferentialequationshavethesameform.Thecorrespondingvariablesandparametersintwocircuitsrepresentedbyequationsofthesameformarecalledanalogs.Anelectriccircuitcanbedrawnthatlookslikethemechanicalcircuitandisrepresentedbynodeequations.TheanalogsarelistedinTable2.4.Thereisaphysicalsimilaritybetweenforcefandcurrenti,…seriesNodesinthemechanicalnetworkareanalogoustonodesintheelectricAnalogousf(f(t)-f(t)-f(t)12Md2dtf(t)=Bf2(t)=AnalogousCircuits:Example:S-M-DSystem WritecircuitEq.of +i1+ = 2
1 =
Dy=1Li i2
=1RNote MDMD2y+ +Ky=OutlineofthischapterBasicLinearMatrixAlgebra&StateMechanicalRotationalThermalHydraulicLinearLiquid-Level OtherMathematicModeling-----MechanicalRotationalTheequationcharacterizingrotationalsystemsaresimilartothosefortranslationsystems,wherethedisplacement,velocity,andaccelerationtermsarenowangularquantities.aceJKBbdfaceJKBbdfFig.2.14NetworkelementsmechanicalrotationalThethreeelementsinarotationalsystemareinertia(慣量),thespring,andthedashpot.Themechanical-networkrepresentationoftheseelementsisshowninFig.2.14.ThetorqueappliedtoabodyhavingamomentofinertiaJproducesanangularacceleration. TJ=Ja=JDw=JD2q(2.73)Whenatorqueisappliedtoaspring,thespringistwistedbyanangleq. Toproducemotionofthebody,atorquemustbeappliedtoovercomethereactiondampingtorque.ThedampingtorqueTB=B(we-wf)=B(Dqe-Dqf)Thetorqueequationiswrittenforeachnodebyequatingthesumofthetorqueateachnodetozero. =Ja=JDw= =Ma= =Ma=MDv=MD2fK=K(xc-xdifxd= = TB=B(we-wf)=B(Dqe-Dqf) fB=B(ve-vf)=B(Dxe
-DxfaaceJKBbdfFig.2.14NetworkelementsmechanicalrotationalThesystemshowninFig.2.15hasamass,withamomentofinertiaJ,immersedinafluid.AtorqueTisappliedtothemass.KBFig.2.15(a)SimplerotationalThereisaonenodehavingadisplacementq;thereforeonlyoneequationisnecessaryAnelectricalanalogcanbeobtainedthustorqueKBFig.2.15(a)SimplerotationalJBK2.15(b)CorrespondingmechanicalJD2q+BDq+KqJBK2.15(b)Correspondingmechanical
d +
JfmechanicalJsJs2q(s)+fsq(s)=M\q(s)M1s(Js+fMultiple-elementmechanicalrotationalThesystemrepresentedbyFig.2.16ahastwodisksthathavedampingbetweenthemandalsobetweeneachofthemandtheframe.ThecorrespondingmechanicalnetworkisdrawninFig.2.16b.Multiple-elementmechanicalrotationalThesystemrepresentedbyFig.2.16ahastwodisksthathavedampingbetweenthemandalsobetweeneachofthemandtheframe.ThecorrespondingmechanicalnetworkisdrawninFig.2.16b.Node1:K1q1-K2q2=T(t) Node2:-K1q1+[J1D2+(B1+B3)D+K1]q2-B3Dq3=0(2.78)Node3:-B3Dq2+[J2D2+(B2+B3)D+K2]q3= J1B1J2K2Fig.2.16(b)Rotationalsystem‘scorrespondingmechanicalMultiple-elementmechanicalrotationalThesethreeequationscanbesolvedsimultaneouslyforq1,q2,andq3asafunctionoftheappliedtorque.G1(D)=TG(D)G(D)G1(D)=TG(D)G(D)AndtheoveralltransferfunctionofthesystemisG=G=GG =q1q2q3=Tq Question2.17:Stateequationforthissystem? Question2.17:Stateequationforthissystem?Figure2.17DetailedandoverallrepresentationsofMoremechanicalrotationalsystemexamplesaresimilar,forEffectivemomentofinertiaanddampingofageartrainshowninFig.2.18ainP.45EffectivemomentofinertiaanddampingofageartrainEffectivemomentofinertiaanddampingofageartrainOtherMathematicModelingThermalSystems(熱力系統(tǒng)Alimitednumberofthermalsystemscanberepresentedbydifferentialequations.Thebasicrequirementisthatthetemperatureofabodybeconsidereduniform.Thenecessaryconditionofequilibriumrequiresthattheheataddedtothesystemequaltheheatstoredplustheheatcarriedaway.Thisrequirementcanalsobeexpressedintermsofrateofheatflow.CRFig.2.19NetworkofCRFig.2.19NetworkofthermalAthermalsystemnetworkisdrawnbythermalcapacitanceandthermalresistance.Theadditionalheatstoredinabodywhosetemperatureisraisedfromq1toq2isgivenbyIntermsofrateofheat q=CD(q2-q1)Thethermalcapacitancedeterminestheamountofheatstoredinabody,-----likeacapacitorinanelectriccircuit.q=q3-qRRateofheatflowthroughabodyintermsoftheq=q3-qRThethermalThethermalresistancedeterminestherateofheatflowthroughthebody,-----likearesistorinanelectriccircuit.Considerathinglass-walledthermometer(haveacapacitanceCandaresistanceR)filledwithmercurythathasstabilizedatatemperatureq1.Itisplungedintoabathoftemperaturesq0att=0.Thetemperatureofthemercuryisqm.Theflowofheatintothethermometer q=q0-qmRTheheatenteringthethermometerstoredintheC,isgivenby
h=D
Theseequationscanbecombinedtoh=q0-qm =C(q-q RCDqm+qm=q0 (2.90)ThethermalnetworkisdrawninFig.2.20.Thenodeequationforthiscircuit,withthetemperatureconsideredasavoltage,givesEq.(2.89)directly.Then,thetransferfunctionG=qm/q0maybe SimplerepresentationofRCD SimplerepresentationofG(D)=qmq
RCD+ G(s)=qm(s) x1uLetx=q,u= x1u
q0(
RCs+Objective:heatingcold-liquidtothetemperatureqa,Wqcqa,Wqc,environmenttemperatureInput(controlvariable)canW,qc,qcandq,etc..ThemostsuitablevariableisW.Othersareasdisturbvariables.StepStep2:AssumptionandStep3:developmathematics ?LetQexpressesquantityofqa,qa,Wqc,environmenttemperatureQQ+Firstly,considersteadystate, =Q +Q =Q +QQQ +Q =QQ +Q =QQ =qcccqc,Q =WH QQ +Q =Qqa,Wqa,Wqc,environmenttemperatureAssumingspecificvolumeofc =c =∵qa=qc+ ?qwhereWisvery\\qa=qcWThisThisisasystem’ssteadystatemodel. y=a+bx Qc+Qs=ThermalSystems:DirectsteamheaterSecondly,considersystemdynamicmodel,itismore
+Q
Q
qa, hot- andVisavailable isfluid’sdensity,environmenttemperature
qc,qc
whereCiscalledcapacitycoefficient.Itrepresentsacapabilitytostoringenergyofthetank.\
+q
cqa=
ccqc+\C dqa+q cqa=qcqc+WHt Sc
OtherMathematicModelingDirectsteam R=qa
Rrepresentsaresistancetopreventheatenergydepartfromthetank.Itiscalledheat∵q =qc+ ?q q, Cdqa
1qaR
1qc
+
dqa+q
=qc+ dqa+qa=qc+qc,qcenvironmenttemperatureThermalSystems:Directsteam
+qa=qc+qa,Wqa,Wqc,environmenttemperature (s)=qa(s)= W(s Ts+qa(s qGd(s)qcIfthereis
(s Ts+IncrementformdifferentialInprocesscontrol,weusuallyconsiderincrementequationofvariables,ForEx.Systemdynamicequation dqa+qa
=qc+ ** \qa =qc0+qa
W dqa+qa
qa
=qc+
KWWeobtainincrementFirst-orderConsideringEqs.labeled**,whichisfirst-orderdifferentialequation,thoughthemodelandRCcircuitmodelrepresenteddifferentsystems,theirtransferfunctionsbetweentheinputandoutputhavesameform.Tde0+e0=
E0(s)(Ts+1)=Ei dqa+qa=qc+
E0(sTsWKqTsWKqa(s)
Ts+First-orderControlpathFirst-order
TsTs1qa(s)First-ordersystem’sstepG(s)=Y(s)= G(s)=Y(s)= U(sTs+Tdy(t)
y(t)= TtT
y(t)t
OtherMathematicModelingLiquid-LevelSystem(液位系統(tǒng)Two-tankliquid-levelcontrolsystemconsistsoftwofirst-orderdependentplantsthatareconnectedinseries.Noted,heretheheightsh1andh2ofthetanksarecoupling(耦合)(seeP53Fig.2.23).Objective:holdh2unchanged,whichrelatedtoqoutandqinqObjective:holdh2unchanged,whichrelatedtoqoutandqinA=cross-sectionaltankObjective:holdh2unchanged,whichrelatedtoqoutandTankTank
dh=-q 1TankTankd2hdt+(T1+T2+A1R2 2+h2=R2q -R2q Notethisiscoupling1TankTankd2hdt+(T1+T2+A1R2 2+h2=R2q -R2q LiquidlevelSystem-1:transfercontrolGcontrolG(D)u(t= h2(t)-R2-T1R2T1T2D2++A1R2)D+ (D)y(t =h2(t)(tqin(tRT1T2D2+ + +A1R2)D+LiquidlevelSystem-1:stateAssignedstateAssignedstatevariablesx=h1x=h1 h2x-1x21= R +x0-R -1T-1AandinputvariablesLetoutputvariables h2y=hy=1y=1x0x1 2LiquidlevelSystem-Two-tankliquidlevelcontrolsystemasFig.below.Definitions A1TankA1TankTankA=cross-sectionaltankObjective:Objective:holdh2unchanged,whichrelatedtoqoutandqinNotedthattheheightsandh2herearemeans:controlqout( LiquidlevelSystem-2whereTank Disturb
=q1
- Tank h2
eliminateinternaleliminateinternalvariablesq1,h1,etc.thenwegot
Tank
R1RR = (R 1
-h2Tank Controlinput A1TankA1TankTankThisisaninput/outputmodel,expressestherelationshipofoutputh2andd
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇州站施工組織設(shè)計方案(幕墻)
- 二零二五年度金融行業(yè)IT運(yùn)維安全保障協(xié)議3篇
- 專業(yè)化海路物流合作合同(2024版)版B版
- 2025年度環(huán)保建筑材料推廣合作框架協(xié)議4篇
- 2025年度購物中心場地合作開發(fā)及商業(yè)運(yùn)營合同4篇
- 二零二四圖書購置項(xiàng)目與圖書館無障礙閱讀服務(wù)合同3篇
- 2025年度智能攤位管理系統(tǒng)開發(fā)與實(shí)施合同4篇
- 2025年度劇本創(chuàng)作與版權(quán)授權(quán)管理合同3篇
- 二零二五版4S店汽車銷售合同樣本圖2篇
- 2025年度農(nóng)產(chǎn)品質(zhì)量安全追溯體系服務(wù)合同4篇
- 衡水市出租車駕駛員從業(yè)資格區(qū)域科目考試題庫(全真題庫)
- 護(hù)理安全用氧培訓(xùn)課件
- 《三國演義》中人物性格探析研究性課題報告
- 注冊電氣工程師公共基礎(chǔ)高數(shù)輔導(dǎo)課件
- 土方勞務(wù)分包合同中鐵十一局
- 乳腺導(dǎo)管原位癌
- 冷庫管道應(yīng)急預(yù)案
- 司法考試必背大全(涵蓋所有法律考點(diǎn))
- 公共部分裝修工程 施工組織設(shè)計
- 《學(xué)習(xí)教育重要論述》考試復(fù)習(xí)題庫(共250余題)
- 裝飾裝修施工及擔(dān)保合同
評論
0/150
提交評論