版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市石景山區(qū)第九中學(xué)2024屆高一上數(shù)學(xué)期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知a=log20.3,b=20.3,c=0.30.3,則a,b,c三者的大小關(guān)系是()A. B.C. D.2.設(shè),則的值為()A.0 B.1C.2 D.33.汽車經(jīng)過啟動、加速行駛、勻速行駛、減速行駛之后停車,若把這一過程中汽車的行駛路程看作時間的函數(shù),其圖象可能是A. B.C. D.4.下列各式正確是A. B.C. D.5.如圖中的圖象所表示的函數(shù)的解析式為()A.BC.D.6.下列命題正確的是A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面交線平行D.若兩個平面都垂直于第三個平面,則這兩個平面平行7.已知,則()A. B.C.2 D.8.“”是“”成立的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.設(shè)函數(shù),若是奇函數(shù),則的值是()A.2 B.C.4 D.10.已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,函數(shù)是奇函數(shù),且當(dāng)時,,則()A.-18 B.-12C.-8 D.-6二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的定義域為_____________.12.函數(shù),函數(shù)有______個零點,若函數(shù)有三個不同的零點,則實數(shù)的取值范圍是______.13.已知點,直線與線段相交,則實數(shù)的取值范圍是____;14.不等式的解集為_____15.已知點為角終邊上一點,則______.16.如果,且,則化簡為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)若的圖象恒在直線上方,求實數(shù)的取值范圍;(2)若不等式在區(qū)間上恒成立,求實數(shù)的取值范圍.18.已知函數(shù),且關(guān)于x的不等式的解集為(1)求實數(shù)b,m的值;(2)當(dāng)時,恒成立,求實數(shù)k的取值范圍19.設(shè)函數(shù),.(1)判斷函數(shù)的單調(diào)性,并用定義證明;(2)若關(guān)于x的方程在上有解,求實數(shù)a的取值范圍.20.已知函數(shù)過點(1)求的解析式;(2)求的值;(3)判斷在區(qū)間上的單調(diào)性,并用定義證明21.在甲、乙兩個盒子中分別裝有標號為1,2,3,4的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個球被取出的可能性相等.(1)求取出的兩個球上標號為相同數(shù)字的概率;(2)若兩人分別從甲、乙兩個盒子中各摸出一球,規(guī)定:兩人誰摸出的球上標的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),這樣規(guī)定公平嗎?請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出大小關(guān)系【題目詳解】∵a=log20.3<0,b=20.3>1,c=0.30.3∈(0,1),則a,b,c三者的大小關(guān)系是b>c>a.故選:D【題目點撥】本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題2、C【解題分析】根據(jù)分段函數(shù),結(jié)合指數(shù),對數(shù)運算計算即可得答案.【題目詳解】解:由于,所以.故選:C.【題目點撥】本題考查對數(shù)運算,指數(shù)運算,分段函數(shù)求函數(shù)值,考查運算能力,是基礎(chǔ)題.3、A【解題分析】汽車啟動加速過程,隨時間增加路程增加的越來越快,漢使圖像是凹形,然后勻速運動,路程是均勻增加即函數(shù)圖像是直線,最后減速并停止,其路程仍在增加,只是增加的越來越慢即函數(shù)圖像是凸形.故選A考點:函數(shù)圖像的特征4、D【解題分析】對于,,,故,故錯誤;根據(jù)對數(shù)函數(shù)的單調(diào)性,可知錯誤故選5、B【解題分析】分段求解:分別把0≤x≤1及1≤x≤2時解析式求出即可【題目詳解】當(dāng)0≤x≤1時,設(shè)f(x)=kx,由圖象過點(1,),得k=,所以此時f(x)=x;當(dāng)1≤x≤2時,設(shè)f(x)=mx+n,由圖象過點(1,),(2,0),得,解得所以此時f(x)=.函數(shù)表達式可轉(zhuǎn)化為:y=|x-1|(0≤x≤2)故答案為B【題目點撥】本題考查函數(shù)解析式的求解問題,本題根據(jù)圖象可知該函數(shù)為分段函數(shù),分兩段用待定系數(shù)法求得6、C【解題分析】若兩條直線和同一平面所成角相等,這兩條直線可能平行,也可能為異面直線,也可能相交,所以A錯;一個平面不在同一條直線的三點到另一個平面的距離相等,則這兩個平面平行,故B錯;若兩個平面垂直同一個平面兩平面可以平行,也可以垂直;故D錯;故選項C正確.[點評]本題旨在考查立體幾何的線、面位置關(guān)系及線面的判定和性質(zhì),需要熟練掌握課本基礎(chǔ)知識的定義、定理及公式.7、B【解題分析】先求出,再求出,最后可求.【題目詳解】因為,故,因為,故,而,故,所以,故,所以,故選:B8、B【解題分析】解出不等式,進而根據(jù)不等式所對應(yīng)集合間的關(guān)系即可得到答案.【題目詳解】由,而是的真子集,所以“”是“”成立的必要不充分條件.故選:B.9、D【解題分析】根據(jù)為奇函數(shù),可求得,代入可得答案.【題目詳解】若是奇函數(shù),則,所以,,.故選:D.10、D【解題分析】首先根據(jù)題意得到,再根據(jù)的奇偶性求解即可.【題目詳解】由題知:,所以當(dāng)時,,又因為函數(shù)是奇函數(shù),所以.故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】根據(jù)偶次根式和分式有意義的要求可得不等式組,解不等式組可求得結(jié)果.【題目詳解】由題意得:,解得:且,即的定義域為.故答案為:.12、①.1②.【解題分析】(1)畫出圖像分析函數(shù)的零點個數(shù)(2)條件轉(zhuǎn)換為有三個不同的交點求實數(shù)的取值范圍問題,數(shù)形結(jié)合求解即可.【題目詳解】(1)由題,當(dāng)時,,當(dāng)時,為二次函數(shù),對稱軸為,且過開口向下.故畫出圖像有故函數(shù)有1個零點.又有三個不同的交點則有圖像有最大值為.故.故答案為:(1).1(2).【題目點撥】本題主要考查了數(shù)形結(jié)合求解函數(shù)零點個數(shù)與根據(jù)零點個數(shù)求參數(shù)范圍的問題,屬于中檔題.13、【解題分析】由直線,即,此時直線恒過點,則直線的斜率,直線的斜率,若直線與線段相交,則,即,所以實數(shù)的取值范圍是點睛:本題考查了兩條直線的位置關(guān)系的應(yīng)用,其中解答中把直線與線段有交點轉(zhuǎn)化為直線間的斜率之間的關(guān)系是解答的關(guān)鍵,同時要熟記直線方程的各種形式和直線過定點的判定,此類問題解答中把直線與線段有交點轉(zhuǎn)化為定點與線段端點斜率之間關(guān)系是常見的一種解題方法,著重考查了學(xué)生分析問題和解答問題的能力14、【解題分析】把不等式x2﹣2x>0化為x(x﹣2)>0,求出解集即可【題目詳解】不等式x2﹣2x>0可化為x(x﹣2)>0,解得x<0或x>2;∴不等式的解集為{x|x<0或x>2}故答案為【題目點撥】本題考查了一元二次不等式的解法與應(yīng)用問題,是基礎(chǔ)題目15、5【解題分析】首先求,再化簡,求值.【題目詳解】由題意可知.故答案為:5【題目點撥】本題考查三角函數(shù)的定義和關(guān)于的齊次分式求值,意在考查基本化簡和計算.16、【解題分析】由,且,得到是第二象限角,由此能化簡【題目詳解】解:∵,且,∴是第二象限角,∴故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】(1)根據(jù)給定條件可得恒成立,再借助判別式列出不等式求解即得.(2)根據(jù)給定條件列出不等式,再分離參數(shù),借助函數(shù)的單調(diào)性求出函數(shù)值范圍即可推理作答.【小問1詳解】因函數(shù)的圖象恒在直線上方,即,,于是得,解得,所以實數(shù)的取值范圍是:.【小問2詳解】依題意,,,令,,令函數(shù),,,,而,即,,則有,即,于是得在上單調(diào)遞增,因此,,,即,從而有,則,所以實數(shù)的取值范圍是.18、(1),;(2).【解題分析】(1)根據(jù)韋達定理求解即可;(2)轉(zhuǎn)化為在上恒成立,利用均值不等式求的最小值即可.【小問1詳解】由題意得:,1是方程的根,由韋達定理得,所以,又,解得所以,【小問2詳解】由題意得,在上恒成立,令,只需即可,由均值不等式得,當(dāng)且僅當(dāng),即時等號成立所以,則的取值范圍是19、(1)在上為增函數(shù),證明見解析;(2)【解題分析】(1)任取且,作差,整理計算判斷出正負即可;(2)將關(guān)于x的方程在上有解轉(zhuǎn)化為在上有解,進一步轉(zhuǎn)化為在上的值域問題,求出值域即可.【題目詳解】解:(1)任取且,,因為,所以,,所以,所以,所以在上為增函數(shù);(2)由題意,得在上有解,即在上有解.由(1)知在上為增函數(shù),所以,所以a的取值范圍是.【題目點撥】方法點睛:方程解的個數(shù)問題可轉(zhuǎn)化為兩個函數(shù)圖象交點的個數(shù)問題;已知方程有解求參數(shù)范圍問題可轉(zhuǎn)化為函數(shù)值域問題.20、(1)(2)(3)在區(qū)間上單調(diào)遞增;證明見解析【解題分析】(1)直接將點的坐標代入函數(shù)中求出,從而可求出函數(shù)解析式,(2)直接利用解析求解即可,(3)利用單調(diào)性的定義直接證明即可【小問1詳解】∵函數(shù)∫過點,∴,∴,得的解析式為:【小問2詳解】【小問3詳解】在區(qū)間上單調(diào)遞增證明:,且,有∵,∴∴,即∴在區(qū)間上單調(diào)遞增21、(1)(2)這樣規(guī)定公平,詳見解析【解題分析】(1)利用列舉法求得基本事件的總數(shù),利用古典概型的概率計算公式,即可求解;(2)利用古典概型及其概率的計算公式,求得的概率,即可得到結(jié)論.【題目詳解】由題意,設(shè)從甲、乙兩個盒子中各取1個球,其數(shù)字
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《倉庫現(xiàn)場管理》課件
- 《倉庫庫存管理系統(tǒng)》課件
- 《小學(xué)細節(jié)描寫》課件
- 單位管理制度集粹選集員工管理篇
- 單位管理制度合并匯編【職員管理】
- 四川省南充市重點高中2024-2025學(xué)年高三上學(xué)期12月月考地理試卷含答案
- 單位管理制度分享合集職員管理篇十篇
- 單位管理制度范文大合集【人事管理】十篇
- 單位管理制度呈現(xiàn)大全職工管理篇十篇
- 《運算律》教案(20篇)
- 物流倉儲設(shè)備維護保養(yǎng)手冊
- 農(nóng)商銀行小微企業(yè)續(xù)貸實施方案
- 2024年山西廣播電視臺招聘20人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 2024山西太原文化局直屬事業(yè)單位招聘30人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 中國普通食物營養(yǎng)成分表(修正版)
- 2024年北京市第一次普通高中學(xué)業(yè)水平合格性考試英語仿真模擬卷03(全解全析)
- 2024年江蘇省淮安技師學(xué)院長期招聘高技能人才3人高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 應(yīng)急救援員五級理論考試題庫含答案
- 2024年導(dǎo)游服務(wù)技能大賽《導(dǎo)游綜合知識測試》題庫及答案
- 高中化學(xué)實驗開展情況的調(diào)查問卷教師版
- 《聲聲慢(尋尋覓覓)》課件 統(tǒng)編版高中語文必修上冊
評論
0/150
提交評論