版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
太原師院附中2024屆高一數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若將函數(shù)圖象向左平移個單位,則平移后的圖象對稱軸為()A. B.C. D.2.函數(shù)是()A.奇函數(shù),且上單調(diào)遞增 B.奇函數(shù),且在上單調(diào)遞減C.偶函數(shù),且在上單調(diào)遞增 D.偶函數(shù),且在上單調(diào)遞減3.函數(shù)圖像大致為()A. B.C. D.4.設(shè)a>0且a≠1,則“函數(shù)fx=ax在R上是減函數(shù)”是“函數(shù)gxA.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.設(shè)函數(shù)的定義域為.則“在上嚴格遞增”是“在上嚴格遞增”的()條件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要6.高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過x的最大整數(shù),則稱為高斯函數(shù)例如:,,已知函數(shù),則函數(shù)的值域為()A. B.C.1, D.1,2,7.將函數(shù)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再將所得的圖象向左平移個單位,得到的圖象對應的解析式是A. B.C. D.8.用長度為24米的材料圍成一矩形場地,中間加兩道隔墻(如圖),要使矩形的面積最大,則隔墻的長度為A.3米 B.4米C.6米 D.12米9.若方程x2+2x+m2+3m=mcos(x+1)+7有且僅有1個實數(shù)根,則實數(shù)m的值為()A.2 B.-2C.4 D.-410.如圖,在中,是的中點,若,則實數(shù)的值是A. B.1C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知sinα+cosα=,α∈(-π,0),則tanα=________.12.設(shè)函數(shù),則下列結(jié)論①的圖象關(guān)于直線對稱②的圖象關(guān)于點對稱③的圖象向左平移個單位,得到一個偶函數(shù)的圖象④的最小正周期為,且在上為增函數(shù)其中正確的序號為________.(填上所有正確結(jié)論的序號)13.已知向量,,若,則與的夾角為______14.已知函數(shù)若是函數(shù)的最小值,則實數(shù)a的取值范圍為______15.在中,,,則面積的最大值為___________.16.已知,則函數(shù)的最大值為___________,最小值為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),且.(1)求的定義域;(2)判斷的奇偶性并予以證明;(3)當時,求使的的解集.18.(1)求式子lg25+lg2+的值(2)已知tan=2.求2sin2-3sincos+cos2的值.19.已知tanα<0,(1)若求的值;(2)若求tanα的值.20.已知向量m=(cos,sin),n=(2+sinx,2-cos),函數(shù)=m·n,x∈R.(1)求函數(shù)的最大值;(2)若且=1,求值.21.國際上常用恩格爾系數(shù)r來衡量一個國家或地區(qū)的人民生活水平.根據(jù)恩格爾系數(shù)的大小,可將各個國家或地區(qū)的生活水平依次劃分為:貧困,溫飽,小康,富裕,最富裕等五個級別,其劃分標準如下表:級別貧困溫飽小康富裕最富裕標準r>60%50%<r≤60%40%<r=50%30%<r≤40%r≤30%某地區(qū)每年底計算一次恩格爾系數(shù),已知該地區(qū)2000年底的恩格爾系數(shù)為60%.統(tǒng)計資料表明:該地區(qū)食物支出金額年平均增長4%,總支出金額年平均增長.根據(jù)上述材料,回答以下問題.(1)該地區(qū)在2010年底是否已經(jīng)達到小康水平,說明理由;(2)最快到哪一年底,該地區(qū)達到富裕水平?參考數(shù)據(jù):,,,
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】由圖象平移寫出平移后的解析式,再由正弦函數(shù)的性質(zhì)求對稱軸方程.【題目詳解】,令,,則且.故選:A.2、A【解題分析】根據(jù)函數(shù)奇偶性和單調(diào)性的定義判定函數(shù)的性質(zhì)即可.【題目詳解】解:根據(jù)題意,函數(shù),有,所以是奇函數(shù),選項C,D錯誤;設(shè),則有,又由,則,,則,則在上單調(diào)遞增,選項A正確,選項B錯誤.故選:A.3、C【解題分析】先分析給定函數(shù)的奇偶性,排除兩個選項,再在x>0時,探討函數(shù)值正負即可判斷得解.【題目詳解】函數(shù)的定義域為,,即函數(shù)是定義域上的奇函數(shù),其圖象關(guān)于原點對稱,排除選項A,B;x>0時,,而,則有,顯然選項D不滿足,C符合要求.故選:C4、A【解題分析】函數(shù)f(x)=ax在R上是減函數(shù),根據(jù)指數(shù)函數(shù)的單調(diào)性得出0<a<1;函數(shù)g(x)=(4-a)?x在R上是增函數(shù),得出0<a<4且【題目詳解】函數(shù)f(x)=ax在R上是減函數(shù),則函數(shù)g(x)=(4-a)?x在R上是增函數(shù),則4-a>0,而a>0且a≠1,解得:0<a<4且a≠1,故“函數(shù)fx=ax在R上是減函數(shù)”是“函數(shù)gx故選:A.5、A【解題分析】利用特例法、函數(shù)單調(diào)性的定義結(jié)合充分條件、必要條件的定義判斷可得出合適的選項.【題目詳解】若函數(shù)在上嚴格遞增,對任意的、且,,由不等式的性質(zhì)可得,即,所以,在上嚴格遞增,所以,“在上嚴格遞增”“在上嚴格遞增”;若在上嚴格遞增,不妨取,則函數(shù)在上嚴格遞增,但函數(shù)在上嚴格遞減,所以,“在上嚴格遞增”“在上嚴格遞增”.因此,“在上嚴格遞增”是“在上嚴格遞增”的充分不必要條件.故選:A.6、C【解題分析】由分式函數(shù)值域的求法得:,又,所以,由高斯函數(shù)定義的理解得:函數(shù)的值域為,得解【題目詳解】解:因為,所以,又,所以,由高斯函數(shù)的定義可得:函數(shù)的值域為,故選C【題目點撥】本題考查了分式函數(shù)值域的求法及對新定義的理解,屬中檔題7、C【解題分析】將函數(shù)y=sin(x-)的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變)得到y(tǒng)=sin(x-),再向左平移個單位得到的解析式為y=sin((x+)-)=y=sin(x-),故選C8、A【解題分析】主要考查二次函數(shù)模型的應用解:設(shè)隔墻長度為,則矩形另一邊長為=12-2,矩形面積為=(12-2)=,0<<6,所以=3時,矩形面積最大,故選A9、A【解題分析】令,由對稱軸為,可得,解出,并驗證即可.【題目詳解】依題意,有且僅有1個實數(shù)根.令,對稱軸為.所以,解得或.當時,,易知是連續(xù)函數(shù),又,,所以在上也必有零點,此時不止有一個零點,故不合題意;當時,,此時只有一個零點,故符合題意.綜上,.故選:A【題目點撥】關(guān)鍵點點睛:構(gòu)造函數(shù),求出的對稱軸,利用對稱的性質(zhì)得出.10、C【解題分析】以作為基底表示出,利用平面向量基本定理,即可求出【題目詳解】∵分別是的中點,∴.又,∴.故選C.【題目點撥】本題主要考查平面向量基本定理以及向量的線性運算,意在考查學生的邏輯推理能力二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】由題意利用同角三角函數(shù)的基本關(guān)系,以及三角函數(shù)在各個象限中的符號,求得和的值,可得的值.【題目詳解】因為sinα+cosα=,①所以sin2α+cos2α+2sinαcosα=,即2sinαcosα=.因為α∈(-π,0),所以sinα<0,cosα>0,所以sinα-cosα=,與sinα+cosα=聯(lián)立解得sinα=-,cosα=,所以tanα=.故答案為:.【題目點撥】該題考查的是有關(guān)三角函數(shù)恒等變換化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,在解題的過程中,注意這三個式子是知一求二,屬于簡單題目.12、③【解題分析】利用正弦型函數(shù)的對稱性判斷①②的正誤,利用平移變換判斷③的正誤,利用周期性與單調(diào)性判斷④的正誤.【題目詳解】解:對于①,因為f()=sinπ=0,所以不是對稱軸,故①錯;對于②,因為f()=sin,所以點不是對稱中心,故②錯;對于③,將把f(x)的圖象向左平移個單位,得到的函數(shù)為y=sin[2(x)]=sin(2x)=cos2x,所以得到一個偶函數(shù)的圖象;對于④,因為若x∈[0,],則,所以f(x)在[0,]上不單調(diào),故④錯;故正確的結(jié)論是③故答案為③【題目點撥】此題考查了正弦函數(shù)的對稱性、三角函數(shù)平移的規(guī)律、整體角處理的方法,正弦函數(shù)的圖象與性質(zhì)是解本題的關(guān)鍵三、13、##【解題分析】先求向量的模,根據(jù)向量積,即可求夾角.【題目詳解】解:,,所以與的夾角為.故答案為:14、【解題分析】考慮分段函數(shù)的兩段函數(shù)的最小值,要使是函數(shù)的最小值,應滿足哪些條件,據(jù)此列出關(guān)于a的不等式,解得答案.【題目詳解】要使是函數(shù)的最小值,則當時,函數(shù)應為減函數(shù),那么此時圖象的對稱軸應位于y軸上或y軸右側(cè),即當時,,當且僅當x=1時取等號,則,解得,所以,故答案為:.15、【解題分析】利用誘導公式,兩角和與差余弦公式、同角間的三角函數(shù)關(guān)系得,得均為銳角,設(shè)邊上的高為,由表示出,利用基本不等式求得的最大值,即可得三角形面積最大值【題目詳解】中,,所以,整理得,即,所以均為銳角,作于,如圖,記,則,,所以,,當且僅當即時等號成立.所以,的最大值為故答案為:16、①.②.【解題分析】利用對勾函數(shù)的單調(diào)性直接計算函數(shù)的最大值和最小值作答.【題目詳解】因函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,當時,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,即有當時,,而當時,,當時,,則,所以函數(shù)的最大值為,最小值為.故答案為:;三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)奇函數(shù),證明見解析;(3)【解題分析】(1)本題可通過求解得出結(jié)果;(2)本題可根據(jù)得出結(jié)果;(3)本題首先可判斷出當時在定義域內(nèi)是增函數(shù),然后通過得出,通過計算即可得出結(jié)果.【題目詳解】(1)因為,所以,解得,的定義域為.(2)的定義域為,,故是奇函數(shù).(3)因為當時,是增函數(shù),是減函數(shù),所以當時在定義域內(nèi)是增函數(shù),即,,,,,解得,故使的的解集為.18、(1);(2).【解題分析】(1)利用的對數(shù)性質(zhì)計算即可;(2)利用三角函數(shù)同角關(guān)系計算即可.【題目詳解】=;,在第一或第三象限,,,若在第一象限,則,若在第三象限,則,不論是在第一或第三象限,都有,原式;綜上,答案為:,.19、(1);(2)或【解題分析】(1)利用同角三角函數(shù)的基本關(guān)系求得的值,可得的值,再利用誘導公式求得要求式子的值(2)利用同角三角函數(shù)的基本關(guān)系求得,由此求得的值【題目詳解】(1),,為第四象限角,,,(2),,,或【題目點撥】本題主要考查同角三角函數(shù)的基本關(guān)系,誘導公式,屬于基礎(chǔ)題20、(1)f(x)的最大值是4(2)-【解題分析】(1)先由向量數(shù)量積坐標表示得到函數(shù)的三角函數(shù)解析式,再將其化簡得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合條件的x的三角函數(shù)值,再有余弦的和角公式求的值【題目詳解】(1)因為f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因為f(x)=1,所以sin=.又因為x∈,即x+∈.所以cos=-cos=cos.=coscos-sinsin=-×-×=-.【題目點撥】本題考查平面向量的綜合題2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代辦公家具的環(huán)保理念與可持續(xù)發(fā)展
- 現(xiàn)代生活節(jié)奏下的胃腸疾病預防教育
- 生產(chǎn)制造中的綠色技術(shù)升級路徑與策略
- 基坑施工安全專項方案
- 現(xiàn)代服務業(yè)的發(fā)展趨勢及投資策略研究
- 生產(chǎn)安全監(jiān)督與危機管理一體化建設(shè)
- 生態(tài)農(nóng)業(yè)發(fā)展對商業(yè)模式的創(chuàng)新影響
- 現(xiàn)代農(nóng)業(yè)機械設(shè)備智能化國際對比研究
- 2024-2025學年高中生物 專題5 課題1 DNA的粗提取與鑒定說課稿 新人教版選修1
- 9 生活離不開他們 第一課時 說課稿-2023-2024學年道德與法治四年級下冊統(tǒng)編版001
- 2025年湖南高速鐵路職業(yè)技術(shù)學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2024年亳州市蒙城縣縣級公立醫(yī)院招聘筆試真題
- 醫(yī)保政策與健康管理培訓計劃
- 策略與博弈杜塔中文版
- 無人化農(nóng)場項目可行性研究報告
- 2024屆上海市金山區(qū)高三下學期二模英語試題(原卷版)
- 學生春節(jié)安全教育
- GA/T 1280-2024銀行自助設(shè)備安全性規(guī)范
- 2024-2025年校長在教研組長和備課組長會議上講話
- 深圳市社會保險參保證明
- 2023年國家護理質(zhì)量數(shù)據(jù)平臺
評論
0/150
提交評論