教程Signalssystems 2015復習練習_第1頁
教程Signalssystems 2015復習練習_第2頁
教程Signalssystems 2015復習練習_第3頁
教程Signalssystems 2015復習練習_第4頁
教程Signalssystems 2015復習練習_第5頁
已閱讀5頁,還剩196頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

x(t)X

Fourier Laplace

Freuenc

X

Zjw)X(z),ReviewandExercisesforSignalsandSystems ZC- x(t)X

X(s),

Fourier

Laplace

FreuencD-

X

Zjw)

X(z),

ZTimeDomain Freq.Domain(Ch1,Ch2) x[n]/ X[ejw]/X(Fourier H[ejw]/H(TimeDomain Freq.Domain(Ch1,Ch2) (Ch3,Ch4…Ch8)

x[n]

x(t)

Fourier

X( H[ejw]/H(Time ComplexFreq.(Ch1,

(Ch9,x[n]/ X(z),ROC/X(s), H(z),ROC/H(s),Time ComplexFreq.(Ch1,

(Ch9,x[n]

x(t)

X(z),ROC

h(t)

H(z),

/H

KeKewordsforChater (1) (2) inthetime (3) (3) (4)(4)Even/Odd (5)LinearKeKewordsforChater (1) (2) inthetime (3) (3) (4)(4) (5)Exponetial(Periodicalx(t)=C

x[n]=C(x(t)=ej0t (x[n]=ej0nUnitSample(t)

fort

,

[n]

n3

n

u(t)

tt

u[n]

nnx(t)=C x[n]=C(x(t)=ejw0t (x[n]=ejw0nUnitSampled(t)=0,fort?,

d

n?3

n=

t><KeywordsKeywordsforChapterLTIsstemAkindof icalssystem UnitImpulseConvolutionSum/IntegralLTIsystemDescribedbyLinearConstant-CoefficientDifferenceandDifferentialEquation(LCCDE)

(ConditionofInitialBlockDiagramu[n]

n n0UnitUnitImpulsexxn=UnitUnitimpulsex[n]x[n]x[k][nkkkkLTI:hk[n]=h[n-KeywordsKeywordsforChapterLTIsstemAkindof icals UnitImpulseConvolutionSum/IntegralDescribedbyLinearConstant-CoefficientDifferenceandDifferentialEquation(LCCDE)(LTI,causal) (ConditionofInitialRest)BlockDiagramRepresentation Convolution

k

[nk]

y[n]

k

k=x[n]*x(x(t)Convolutiony(t)x()h(t(Input:Sumofunit=x(t)*(Output:SumofunitimpulsesCalculationofConvolutionSum/ConvolutionIntegralIndependentvariablereplace:x[n]x[k],h[n]h[k]TimeInversalTimeShiftFour

h[k]h[-k]h[n-Multiplication:

y[n]

kFour

Independentx(t)x(),h(t)h()Transformationofinh():h()h(-)h(t- x()h(t-

y(t)

)dxxn=dUnitUnitimpulseProertiesofLTISDiscrete Continuous(1)x[n]*h[n]=h[n] x(t)*h(t) h(t)2xn*{h1n+h2 x(t)

Notes:OnlyforLTI h(t)=k|h[k]|k|h()|d

h[n]=0forn<0h[n]*h1[n]=[n]

h(t)=0fort<0h(t)*h1(t)=(t)TypicalTypicalLTISystemanditsUnitImpulseDiscrete Continuous

Identityht=

x[n][n]

y(t)

x(t)(t)

Gain y[n]

x[n]K[n]

y(t)

x(t)

(t)

yy[n]x[n][nn]x[nn00y(t)x(t)(tt)x(tt ¥Convolution

[n-k]

=¥¥

=x[n]*x(t)

Convolution y(t)

(Input:Sumofunit

=x(t)*(Output:Sumofunitimpulsesy[n]

x[n]h[n]

x[knkn

y(t)

x(t)h(t)

t1storder 1storderth[n]=[n]-[n- x[n]([n][nx[n]x[ny(t)x(t)d(t)dx(t)ConvolutioninteralwithSin x

*(t)

x(t)x

*

t0)

t0

t1)*

t2)

t2

x(t)*

'(t)

55xt*u(t)((t)t(6)x(t)*h x'ttCalculationofConvolutionSum/ConvolutionIndependentvariablereplace:fix[k],h[n] fih[k]TimeInversalTimeShift:Four fih[- fih[n-Four

+ fix(t),h(t) Transformationoftinh(t): fih(-t) fih(t- x(t)h(t-t)ConvolutionConvolution

Integrating:y(t)

ConvolutionConvolutionProertiesofLTISDiscrete Continuous(1)x[n]*h[n]=h[n]*x[n] x(t)*h(t)= h(t)*x(t)2xn*{h1n+h2n x(t)*{h1(t)+h2(t)} h(t)=k

h[n]=0forn<0

h(t)=0fort<0SolutionSolutionforLCCDE(DifferenceRecursiveequationyy[n]x[n]1y[n2Initialcondition

=(ConditionofInitial x(n)

n

y(n)

nTypicalTypicalLTISystemanditsUnitImpulseDiscretetime Continuoustime Identitysystemht=dt Gain y(t)=x(t)* (t)=Time sBlockBlockDiagramfoy[n]=x[n]*h[n]=x[k

y(t)=x(t)*h(t)=-¥1storderDifference 1storderDifferentialh[n]=d[n]-d[n-1] (t)a

(t)

bx(t)KewordsforChaterFourierSeriesKewordsforChaterFourierSeriesk

ae

arecalledFourierSeriescoefficientsspectralcoefficientsx(t).~(t)Fak kTx(t)ejk0tdt(AnalysisTConvolutioninteralwithSin xt*d(t)=x(t) xt*d(t-t0)=x(t-t0x(t-t1)*d(t-t2)=x(t-t1-t2x(t)*d'(t)=xFSinSignalFSinSignal0x(t)0a0kFS(Synthesis(Time kkTx(t)eT0tdt(Analysis(Freq.xt*u(t)=x(-1)(t) (6)x(t)*h =

FSFSinLTIsystem

Basicx(t)

k

ak

akH(

k

Basic

akH

HH(H(jw)~H(jw)~ConvolutionConvolutionFILTERFILTER(filtering

y(t)

x(t)

dx(t)HH(jw) KewordsforChaterFourierTransform(FT): x(t)e

FTx(t)

1

X(jX(j)X(j)ejX(ConvolutionConvolution7(9)7(9)PropertiesofFourierTime/Freq.Time/Freq.TimeTimeConjugationanditsX(jt)2x((Convolution+Parseval’sParseval’s(j(00ax(t)by(t)aX(j)(j(00

t)ejt0X

ej0tx(t)x*(t) x'(t)dx(t)jX(jX*(jjtx(t) x(at) X(ja

x(t)

dt1 |X

d

SolutionSolutionforLCCDE(Differencey[n]=y[n]=x[n]+1y[n-Initialcondition(LTI,causal)=(ConditionofInitial x(n)= n< y(n)= n<

TypicalFTpairs(7x(t t

X(j)

a

(a at

eat

(t0x(t

u(t

(t01x(t)

2 Xt

j)

a2x(t)

eat

,a0 2X2X(11f(t)10t0BlockBlockDiagramfo1x(t)

2

t

W/

x(t)

1X

W

W

sincsinc()sin(

sa()21t (t)(j)ndt2(-j)nndtd

(a

,(a

sign(t)1

u(t)

11jsign()Fj(j( (t)+a

(t)=TheTheFTsoftypicalperiodicsignalsx(t)x(t)X(j)2sink k0)2Sinusoidalsikx(t)sin0tX(F00)0x(t)0

costX

0xx(t)a0tFkX(j)ak0)kk(3)Impulsex(t)(tnT)X(j)2TkTKewordsforChaterForsignalx(t)

(

jΦ)e

A

x(t)X( X(

)

X(

)|

jX(|X(

)|

MagnitudeSpectrumPhaseSpectrumKewordsforChaterFourierSeries ae (SynthesisTTx(t)e-jkw0tdt(AnalysisFF~(t)arearecalledFourierSeriescoefficientsspectralcoefficientsx(t).ForLTIsystemh(t)X(j

|H

Magnitude

H(jw)

PhaseY(jw)

X( H(

X(jw)

LTIsystem’sinfluence:Gain&Phase(T,wKeywordsforChapterKeywordsforChapter(Shannon)SamplingLetx(t)beaband-limitedsignalX(j)=0for||>M.Thenx(t)isuniquelydeterminedbyitssamplesx(nT),n=0,1,2,…,ifXX唯一恢p(j)x唯一恢ps≥2M,where2MiscalledNyquistRate.(Minimumdistortionlesssamplingfrequency)FSFSinLTIsystem Basicx(t)kk

ae

¥k=-¥Basic¥ akH(jkw033MethodsofSignalSamplingand1)Impulse-trainSamplingandxp(t)x(txp(t)x(t)p(t)x(nT)(tx

H(

x(t) xr(t)

xp(t)sin((tnT)/T)1T1

x(nT) Xp(jw) X(wkws

(tnT

H(Tk

X(jw)

Xp(jw)H(

(wMwcwswMH(H(jw)~—H(jw)~SamplingSamplingwithZero-orderxp(xp(t)x(nT)(tnT1k tx(t)x(t)h(t)ror(2)xo(t)xp(t)ho(t)x(nT)ho(tnTH(jw)T/H(jw),wroc0,wcjwT/2sin(wT/wH0(jw)ks0H( X(wkw0p0swX(jw)X(jw)H(jw)sX(wkwkTpX(jw)Xr( Xo(jw)Hr(FILTERFILTER(filtering x(t)H(jw)=3)Sampling3)Samplingwithaperiodicnarrowsquarex(t)x(t)S1tTxs(t)x(t)pTxr(t)xs(t)hrX(jw)sX(jw)P(T aX(wkwksX(jw)X(jw)H(rsrkPT(jw)2ak(wkwskc0,wrH(jw)ao,w KeywordsforKeywordsforChapter(1)c(t)e y(t)x(t)c(t)InTime InFreq.X(jw)Y(jwjwcx(t)y(t)eY(jw)X(jwjwcy(t)x(t)ejctKewordsforChater:-- FT

x(t)ejwtx(t)

1

?fi(w)F 2p-(2)c(t)cos(wc(2)c(t)cos(wct)cos(wct YY(jw)1X(jwjw)1X(jwjw2c2cy(t)x(t)w(t)y(t)cos(wct)*h(t)2sinwW(jw)1Y(jwjw)1Y(jwjw2c2c. tc4c421Y(jw)1Y(jwj2w)1Y(jwj2wx(t)[1cos(2wct)]7(9)7(9)PropertiesofFourierTime/Freq.Time/Freq.TimeTimeConjugationanditsfi(Convolution+KeywordsKeywordsforChapterKeypointsLTanditsROC roertiesandLTILT(PartialFractionApplicationofLTSystemanalysis BlockDiagramPropertiesPropertiesofLaplace-a1t)

aX1(s)

Time

Containing

t0

e

X(s),Shiftingins-es0t

x(t)

X(s,e(,e((s1)2

s0

X(s)Re{sX(s)

2

2(t

)fi)fiejw0tx(t)fi0fi fi x(at)fi1ax(t)+by(t)fi)+bY( xx'(t)=dx(t)fi f

+¥|x(t)|2dt=

|X(jw)|2 Time x(at)

X x*(t)

X*(s*), x(t)

is

X*(s)

X(s*)ZerospolesTheConvolutionx1(t)

x2(t)

X1(s)

2(s),ContainingR1 2p-Differentiationinthetimedx(t)

sX(s),

Containinguk(t)

sk,Integrationinthetimetx(t

LT

1X(s),sContaining

TypicalFTpairs(7x(t ?t

X(jw)=a+

(a>x(t)=e-atu(t

(t?0 (t<01x(t) 2?fiXt

jw)=a2+wIfx(t)0,forIfx(t)0,fort.ItsLTROC:Re{s}>19)Differentiationinthes-tx(t) dX(s),Rteatu(t) -d1dss1(ntn1eatu(t)LT]11(sa)2,Re{s}(sa)n,Re{s}Re{x(t)=e-at ,a>55TypicalLT(a:1eatu(t)eatu(t)sa,Re{s}Re{a1s,Re{s}Re{aaReImComplex0 0tu(t) ss2200tu(t)0s2202X2X(?1f1f(t)?F(jw)=

letu(t)

s

u(t)

1 s

0(t-t)0

Re}:theentires-

nT

ensT

esTn0

n0

1

?t

p0pp0pW/

x(t)=p

1X(jwt sinc()

ILT-PartialFractionn>m,RationalX(s),ILT-PartialFractionn>m,RationalX(s),D(s)=0hasthesame

sm1

sm2

LbsX(s)

m2 (s

)r(s

)(s

)L(s n1r 1r(s

(s

)r

L

(s

L ILT

(r

t

Aeitu(t)ii…iin≤m,Rational

(r

t

Aeitu(t)X(s)[Asmn

smn1

L

s

N1(s)

dmn

mn

mn1

dtmn

mn(t)

(t)w Wsa()=BlockBlockdiagramofRationalH(s)H(s)Y(s)X(s)Step1s23s)(2s24s2

y(t)

2y(t)2

x(t)4

x(t)

6x(t)22StepStep1Y(s)(2s24s6)Y(s)s23s1X(s)1Y(s)

>?1+t?1+tfi?fiddt?(jw)t?2p(-dd(w

d(w)+sign(t)=+1(t>0)?fi

u(t)1s1X1s1

s2Y

1s1s

4s

Y

Y(s)X(s)

E(s)

F(s)ss

Z(s)s1s1TheTheFTsoftypicalperiodicsignals(1)Periodicsquarex(t)=cosw0t?fiX(jw)=pd(w+w0)+pd(w-w0KeywordsKeywordsforChapterKeyZTanditsROC roertiesandZTIZT(PartialFractionExpansion/PowerSeriesApplicationofZTSystem H(z)-定性/BlockDiagram(3)ImpulseF

2p x(t)=

d(t-nT)

fiX(jw)

Tk=- xx(t)=ae?fiX(jw)=a2pd(w-kwPropertiesPropertiesofZ-ax[n]

aX1(z)

Time

Contains

z

X(z),R是否包含0,∞有可能變化Scalinginz-zzn0x[n]X(z/z0ejω0nx[n]X(ejω0z),

X(z),KewordsforChaterAej(wt+Φ)=(AejΦ)eForsignalx(t)Acos(wtx(t)?fiX( X( )=|X( |X(—X

)|--

MagnitudeSpectrumPhaseSpectrumTimexTimex[n]X(1z x*[n]

X*(z*),

isX(z)

X*(z*

Zerospoles(zTheConvolution(z

x2

X1(z)X

R1∩R2Differentiationinthez-

z

X(z),TheInitial-ValueIfx[n]

n

ROC:|z|>r1zzx[0]limX(z),ForLTIsystemh(t)

H(jw)

|H(jw)|---Magnitude—H(jw)---PhaseY(jw)

—Y(jw)=—X(jw)+—H(LTIsystem’sinfluence:Gain&PhaseTypicalZTanu[n]

1az

,zanu[

,z

1az2

1z

,zu[n

1z

,z

z

,zu[nm

1z

z1z

,z

u[(nm)? 1

)zcos(ω0n)u[n] ,

1

)z)z

z2z1

u[n] ,0 10

)z1

z2

δ

0z

z

]

z

0z0 n0(

Rinclude)n0<0,RincludeKeywordsKeywordsforChapterLetx(t)beaband-limitedsignalX(jw)=0for|w|>wM.Thenx(t)isuniquelydeterminedbyitssamplesX 唯一恢fiXX 唯一恢fiXj)px( 唯一恢fipwws≥2wM,where2wMiscalledNyquistRate.(Minimumdistortionlesssamplingfrequency)nanu[nanu[n]az(1az1)2,z1anu[n1]ZTX(z)ln(1az1)nzPartialFractionX(z)m i11aiinA(a)u[m/inA(a)mx[n]XX(z)ammx[n]a[nmm33MethodsofSignalSamplingandImpulse-trainSamplingand x

H(

p xr(t)=xp(t) Xp(jw)=

=Tx(nT)

H(sTk=- X(jw)=s

p(jw)H(T TBlockdiagramofRationalBlockdiagramofRationaly[n]1y[n1]1y[n2]x[n]7x[n1]1x[n4842H(z)Y(z)X(z)17z11z111z11z )(17z11z2811z11z42448Y(z)1StepStepY(z)1X(z)z18z11411StepY(z)4z12z2)Y(z)1

(wM<wc<ws-wMStep

Step1

z1

z

14

z12

z2

zz1444z118182SamplingSamplingwithZero-orderxp(xp(t)=x(nT)(t-nT0Tx(t)=x(t)*hror(2)xo(t)=xp(t)*ho(t)=x(nT)ho(t-nTXr(Xo(jw)Hr(X(jw)=X(jw)H(jw)=wH( X(w-kwwH0(jw)=2sin(wT/2)e-jwT/0,w?T/H(jw),w£H(jw)=X(w-kwX(jw)=Tk=-Chapter

11

x(t)

1x(t)

CcH2(jH2(j

H21

c

xs(t)= pT

xr(t)=xs(t)*hrX(jw)X(jw)=1X(jw)*P(jw)aX(w-kw(jw)((jw)=¥1/ao,w£H(jw)0,w?x(t)x(t) ajk0y(t) aH(jk0kk0xx(t) akH(jkw0[(1)k,kaT2,0kLL101k3KeywordsforChapter(1)c(t)=KeywordsforChapter(1)c(t)=e InTime InFreq.Y(jw)=X(jw-jwcx(t)=y(t)cX(jw)=Y(jw+jwcy(t)=x(t)ejwctH(H2(jk0

H1(jk0

(

)

CCCC10H(1,k20)0000LLk101 4Y(jw)=1Y(jw)=1X(jw-jw)+1X(jw+jw2c2c(2)c(t)=cos(wct)cos(wcty(t)=x(t) w(t)=y(t)cos(wc

*

W(jw)=1Y(jw-jw)+1Y(jw+jw =1Y(jw)+1Y(jw-j2w)+1Y(jw+j2w y(t)ay(t)aH(k1jk0013kk

ae

y2

k1

akH2

)e1

4sinkaek

k KeywordsKeywordsforChapterKeypointsLTanditsROC roertiesandLTILT(PartialFractionApplicationofLTSystemanalysis Chapter

X(j x(t)

nT

X(j)T

k

T

T1

x(t)

cH2(H2(jH2(j

cBlockDiagramY(

)X

T

H(k

2)

T

TT2 TT

T

(kT)

T

T

T

y1(t)

t)]

y2(t)

WaveformintimeContainingTime0x(t-t)?LTfie-st0X(s),0es0tx(t)?fiX(s

s0),X(s)

e-( (s+1)2+

? Examplex(Examplex(t)(sint)sin(t/x(t)(sint)(sin(t/2))X(j)1FsintFsin(t/2)2tFFsinttFsin(t/2)12120121222012322

Homework4.10(a)

x1(t)

(t)2

X1(jw)

2(x(t)

(sint

t2(sint)4dt

x(t)FT

dX(

G(j) Qg(t)

tx(t)

t(sint

212

g(t)

dt

2

G(

)2

21

t2(sint)4dt2

Time

1X(sx(at)?

x*(t) ?TfiX*(s*), x(t)is X*(s)=X(s*)x1(t)*x2(t)?fiX1(s)X2(s),ContainingR1HomeworkHomeworkHomeworkHomeworkHomeworkdx(t)

?

sX(s),Containinguk(t)?sk,Integrationinthetime x( ?LTfi1X(s), ContainingChapterChapterXX(s)(s)2,Re{s}1et2(t1)u(t

e(22X(s)

es

es

0

x(t)?Homework9.44,ChapterChapterHomeworkX(z)

2z1),

2

x[n]?XX(z)11z,z1Ifx(t)=0,fort<sfi+)

.ItsLTROC:Re{s}>s1tfisfiy(t)

(2

3cos

sin10t)[sin

h(t)d(t)h(t)d(t)siny(t)k(1k1)sin(2kt)]h(t)F{sin(2kt)}j(w2k)j(w2k

e-atu(t)?-e-atu(-t)

s+1s+

,Re{s}>Re{-a,Re{s}<Re{-aa:ReIm,Complex,0,

tu(t) T 0sinwtu(t) LT0

00

s2 x1(t)x1(t)x1((t3))x2(t)

letu(t)

?Tfi1s1

-u(-t)?T

sd(t)?Tfi Re}:theentires- d(t-nT)? e-nsT=1/(1-e-sT x(t)x(t)cos(t) 2e2y(t)1H(j)ejt1H(j)e220 H0 H(sLTI,h(t0ses0t

n]

(z)n

y(t)H(z)(z

z0 zyy[n]x[n]y1[n(z)

Y(z)

y[n]X(z)HX(z)H(z)Y(z)

211z1211z1z211

y[n]y[n]x[n]1y[n1210

11z2

(z)

12

z1

zsbsm+b sm-1+b m-2+L+bs+bX(s)= s(s

1)r(s-r+1)(s-r+2)L(s-n=

+L+

+L+)1)(s-)1)

(s

1

(s-1

s-r

s-i Ai?ILT

1

i-Aelitu(-iDX(s)=[Asm-n+Asm-n-1+L+ s+ +N1D?

m-

m- 1

(s)dddtm-

=m(t)

d)

BlockdiagramofRational22 y(BlockdiagramofRational22

y(t)+2y(t)=2

x(t)+4

x(t)-YY(s)1s2+3s+StepY(s)=(2s2+4s-6)Y s

s

2s2+4s-

-

Y

Fs-s

Zs1s1KeywordsKeywordsforChapterKeyZTanditsROC roertiesandZTIZT(PartialFractionExpansion/PowerSeriesApplicationofZTSystem BlockDiagramax[n]+bx[n]?fiaX1(z)+bX2( Time Contains -x[n-n0]?fi X(z),zx[n]zx[n]ZTTfiX(z/z0X(e-jω0z),? ?

Xz),RTime x*[n] fiX*(z*),Forx[n]isX(z)X*(z*)Zeros,polesTheConvolutionProx[n]*x[n]?fiX(z)

(z)

R1dfi

X(z),Ifx[n]=0, n<0.ROC:|z|>r1

x[0]=z¥X(z),TypicalZTanu[n]

?T

,z>

u[-n-1]

T

,z< 2

,z>-u[-n-1]?T

1-

-1,z

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論