2024屆山東省鄒城市第六中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁
2024屆山東省鄒城市第六中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁
2024屆山東省鄒城市第六中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁
2024屆山東省鄒城市第六中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁
2024屆山東省鄒城市第六中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山東省鄒城市第六中學(xué)九年級數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.下列各點在反比例函數(shù)圖象上的是()A. B. C. D.2.一元二次方程中至少有一個根是零的條件是()A.且 B. C.且 D.3.中,,是邊上的高,若,則等于()A. B.或 C. D.或4.下列說法正確的是()A.經(jīng)過三點可以做一個圓 B.平分弦的直徑垂直于這條弦C.等弧所對的圓心角相等 D.三角形的外心到三邊的距離相等5.如果關(guān)于的方程沒有實數(shù)根,那么的最大整數(shù)值是()A.-3 B.-2 C.-1 D.06.如圖,在△ABC中,D、E分別是AB、AC的中點,下列說法中不正確的是()A. B. C.△ADE∽△ABC D.7.為了盡早適應(yīng)中考體育項目,小麗同學(xué)加強跳繩訓(xùn)練,并把某周的練習(xí)情況做了如下記錄:周一個,周二個,周三個,周四個,周五個則小麗這周跳繩個數(shù)的中位數(shù)和眾數(shù)分別是A.180個,160個 B.170個,160個C.170個,180個 D.160個,200個8.如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(﹣3,0),其對稱軸為直線x=﹣,結(jié)合圖象分析下列結(jié)論:①abc>0;②3a+c>0;③當x<0時,y隨x的增大而增大:④若m,n(m<n)為方程a(x+3)(x﹣2)+3=0的兩個根,則m<﹣3且n>2;⑤<0,其中正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個9.一個幾何體由大小相同的小方塊搭成,從上面看到的幾何體的形狀圖如圖所示,其中小正方形中的數(shù)字表示在該位置的小立方塊的個數(shù),則從正面看到幾何體的形狀圖是()A. B. C. D.10.拋物線y=2(x+3)2+5的頂點坐標是()A.(3,5) B.(﹣3,5) C.(3,﹣5) D.(﹣3,﹣5)二、填空題(每小題3分,共24分)11.如圖,在菱形ABCD中,AE⊥BC,E為垂足,若cosB=,EC=2,P是AB邊上的一個動點,則線段PE的長度的最小值是________.12.如果,那么=_____.13.二次函數(shù)y=x2+4x+a圖象上的最低點的橫坐標為_____.14.如圖,拋物線交軸于點,交軸于點,在軸上方的拋物線上有兩點,它們關(guān)于軸對稱,點在軸左側(cè).于點,于點,四邊形與四邊形的面積分別為6和10,則與的面積之和為.15.若是關(guān)于的一元二次方程,則__________.16.拋物線y=x2﹣4x+與x軸的一個交點的坐標為(1,0),則此拋物線與x軸的另一個交點的坐標是______.17.直線y=2被拋物線y=x2﹣3x+2截得的線段長為_____.18.一個三角形的兩邊長分別為3和6,第三邊長是方程x2-10x+21=0的根,則三角形的周長為______________.三、解答題(共66分)19.(10分)已知△ABC內(nèi)接于⊙O,過點A作直線EF.(1)如圖①所示,若AB為⊙O的直徑,要使EF成為⊙O的切線,還需要添加的一個條件是(至少說出兩種):或者.(2)如圖②所示,如果AB是不過圓心O的弦,且∠CAE=∠B,那么EF是⊙O的切線嗎?試證明你的判斷.20.(6分)三臺縣教育和體育局為幫助萬福村李大爺“精準脫貧”,在網(wǎng)上銷售李大爺自己手工做的竹簾,其成本為每張40元,當售價為每張80元時,每月可銷售100張.為了吸引更多顧客,采取降價措施.據(jù)市場調(diào)查反映:銷售單價每降1元,則每月可多銷售5張.設(shè)每張竹簾的售價為元(為正整數(shù)),每月的銷售量為張.(1)直接寫出與的函數(shù)關(guān)系式;(2)設(shè)該網(wǎng)店每月獲得的利潤為元,當銷售單價降低多少元時,每月獲得的利潤最大,最大利潤是多少?(3)李大爺深感扶貧政策給自己帶來的好處,為了回報社會,他決定每月從利潤中捐出200元資助貧困學(xué)生.為了保證捐款后每月利潤不低于4220元,求銷售單價應(yīng)該定在什么范圍內(nèi)?21.(6分)李明準備進行如下操作實驗,把一根長40cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.(1)要使這兩個正方形的面積之和等于58cm2,李明應(yīng)該怎么剪這根鐵絲?(2)李明認為這兩個正方形的面積之和不可能等于48cm2,你認為他的說法正確嗎?請說明理由.22.(8分)如圖,AD是⊙O的弦,AC是⊙O直徑,⊙O的切線BD交AC的延長線于點B,切點為D,∠DAC=30°.(1)求證:△ADB是等腰三角形;(2)若BC=,求AD的長.23.(8分)問題情境:在綜合實踐課上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開展數(shù)學(xué)活動,如圖(1),將一張菱形紙片ABCD(∠BAD=60°)沿對角線AC剪開,得到△ABC和△ACD操作發(fā)現(xiàn):(1)將圖(1)中的△ABC以A為旋轉(zhuǎn)中心,順時針方向旋轉(zhuǎn)角α(0°<α<60°)得到如圖(2)所示△ABC′,分別延長BC′和DC交于點E,發(fā)現(xiàn)CE=C′E.請你證明這個結(jié)論.(2)在問題(1)的基礎(chǔ)上,當旋轉(zhuǎn)角α等于多少度時,四邊形ACEC′是菱形?請你利用圖(3)說明理由.拓展探究:(3)在滿足問題(2)的基礎(chǔ)上,過點C′作C′F⊥AC,與DC交于點F.試判斷AD、DF與AC的數(shù)量關(guān)系,并說明理由.24.(8分)某廣告公司設(shè)計一幅周長為16米的矩形廣告牌,廣告設(shè)計費為每平方米2000元.設(shè)矩形一邊長為x,面積為S平方米.(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)設(shè)計費能達到24000元嗎?為什么?(3)當x是多少米時,設(shè)計費最多?最多是多少元?25.(10分)用配方法解方程:x2﹣6x=1.26.(10分)下面是小東設(shè)計的“過圓外一點作這個圓的兩條切線”的尺規(guī)作圖過程.已知:⊙O及⊙O外一點P.求作:直線PA和直線PB,使PA切⊙O于點A,PB切⊙O于點B.作法:如圖,①連接OP,分別以點O和點P為圓心,大于OP的同樣長為半徑作弧,兩弧分別交于點M,N;②連接MN,交OP于點Q,再以點Q為圓心,OQ的長為半徑作弧,交⊙O于點A和點B;③作直線PA和直線PB.所以直線PA和PB就是所求作的直線.根據(jù)小東設(shè)計的尺規(guī)作圖過程,(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)(2)完成下面的證明.證明:∵OP是⊙Q的直徑,∴∠OAP=∠OBP=________°()(填推理的依據(jù)).∴PA⊥OA,PB⊥OB.∵OA,OB為⊙O的半徑,∴PA,PB是⊙O的切線.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】將每個選項中點的橫坐標代入反比例函數(shù)解析式中,看函數(shù)值是否一致,如果一致,說明點在函數(shù)圖象上,反之則不在.【題目詳解】A選項中,當時,故該選項錯誤;B選項中,當時,,故該選項正確;C選項中,當時,,故該選項錯誤;D選項中,當時,,故該選項錯誤.故選B【題目點撥】本題主要考查點是否在反比例函數(shù)圖象上,掌握反比例函數(shù)變量的求法是解題的關(guān)鍵.2、D【分析】代入,求得一元二次方程需滿足的條件.【題目詳解】由題意得,一元二次方程存在一個根代入到中解得故答案為:D.【題目點撥】本題考查了一元二次方程的解法,掌握解一元二次方程的方法是解題的關(guān)鍵.3、B【分析】根據(jù)題意畫出圖形,當△ABC中為銳角三角形或鈍角三角形兩種情況解答,結(jié)合已知條件可以推出△ABD∽△BCD,即可得出∠ABC的度數(shù).【題目詳解】(1)如圖,當△ABC中為銳角三角形時,

∵BD⊥AC,∴△ABD∽△BCD,

∵∠A=30°,

∴∠ABD=∠C=60°,∠A=∠CBD=30°,

∴∠ABC=90°.

(2)如圖,當△ABC中為鈍角三角形時,

∵BD⊥AC,∴△ABD∽△BCD,

∵∠A=30°,

∴∠ABD=∠DCB=60°,∠A=∠DBC=30°,

∴∠ABC=30°.

故選擇B.【題目點撥】本題考查了相似三角形的判定與性質(zhì),將三角形分銳角三角形和鈍角三角形分別討論是解題的關(guān)鍵.4、C【解題分析】根據(jù)確定圓的條件、垂徑定理的推論、圓心角、弧、弦的關(guān)系、三角形的外心的知識進行判斷即可.【題目詳解】解:A、經(jīng)過不在同一直線上的三點可以作一個圓,A錯誤;B、平分弦(不是直徑)的直徑垂直于這條弦,B錯誤;C、等弧所對的圓心角相等,C正確;D、三角形的外心到各頂點的距離相等,D錯誤;故選:C.【題目點撥】本題考查的是圓心角、弧、弦的關(guān)系、確定圓的條件、垂徑定理的推論和三角形外心的知識,掌握相關(guān)定理并靈活運用是解題的關(guān)鍵.5、B【分析】先根據(jù)根的判別式求出k的取值范圍,再從中找到最大整數(shù)即可.【題目詳解】解得∴k的最大整數(shù)值是-2故選:B.【題目點撥】本題主要考查根的判別式,掌握根的判別式與根的個數(shù)的關(guān)系是解題的關(guān)鍵.6、D【解題分析】∵在△ABC中,點D、E分別是AB、AC的中點,∴DE∥BC,DE=BC,∴△ADE∽△ABC,,∴.由此可知:A、B、C三個選項中的結(jié)論正確,D選項中結(jié)論錯誤.故選D.7、B【解題分析】根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.【題目詳解】解:把這些數(shù)從小到大排列為160,160,170,180,200,最中間的數(shù)是170,則中位數(shù)是170;160出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則眾數(shù)是160;故選B.【題目點撥】此題考查了中位數(shù)和眾數(shù),掌握中位數(shù)和眾數(shù)的定義是解題的關(guān)鍵;中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).8、C【分析】根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),利用二次函數(shù)的性質(zhì)可以判斷各個小題中的結(jié)論是否正確,從而可以解答本題.【題目詳解】∵拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1),其對稱軸為直線x,∴拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1)和(2,1),且,∴a=b,由圖象知:a<1,c>1,b<1,∴abc>1,故結(jié)論①正確;∵拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1),∴9a﹣3b+c=1.∵a=b,∴c=﹣6a,∴3a+c=﹣3a>1,故結(jié)論②正確;∵當x時,y隨x的增大而增大;當x<1時,y隨x的增大而減小,故結(jié)論③錯誤;∵拋物線y=ax2+bx+c(a≠1)與x軸交于點(﹣3,1)和(2,1),∴y=ax2+bx+c=a(x+3)(x﹣2).∵m,n(m<n)為方程a(x+3)(x﹣2)+3=1的兩個根,∴m,n(m<n)為方程a(x+3)(x﹣2)=﹣3的兩個根,∴m,n(m<n)為函數(shù)y=a(x+3)(x﹣2)與直線y=﹣3的兩個交點的橫坐標,結(jié)合圖象得:m<﹣3且n>2,故結(jié)論④成立;∵當x時,y1,∴1.故結(jié)論⑤正確.故選:C.【題目點撥】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:對于二次函數(shù)y=ax2+bx+c(a≠1),二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>1時,拋物線向上開口;當a<1時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>1),對稱軸在y軸左;當a與b異號時(即ab<1),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(1,c);拋物線與x軸交點個數(shù)由△決定:△=b2﹣4ac>1時,拋物線與x軸有2個交點;△=b2﹣4ac=1時,拋物線與x軸有1個交點;△=b2﹣4ac<1時,拋物線與x軸沒有交點.9、D【解題分析】試題分析:根據(jù)所給出的圖形和數(shù)字可得:主視圖有3列,每列小正方形數(shù)目分別為3,2,3,則符合題意的是D;故選D.考點:1.由三視圖判斷幾何體;2.作圖-三視圖.10、B【解題分析】解:拋物線y=2(x+3)2+5的頂點坐標是(﹣3,5),故選B.二、填空題(每小題3分,共24分)11、4.2【解題分析】設(shè)菱形ABCD的邊長為x,則AB=BC=x,又EC=2,所以BE=x-2,因為AE⊥BC于E,所以在Rt△ABE中,cosB=,又cosB=于是=,解得x=1,即AB=1.所以易求BE=2,AE=6,當EP⊥AB時,PE取得最小值.故由三角形面積公式有:AB?PE=BE?AE,求得PE的最小值為4.2.點睛:本題考查了余弦函數(shù)在直角三角形中的運用、三角形面積的計算和最小值的求值問題,求PE的值是解題的關(guān)鍵12、【解題分析】試題解析:設(shè)a=2t,b=3t,故答案為:13、﹣1.【解題分析】直接利用二次函數(shù)最值求法得出函數(shù)頂點式,進而得出答案.【題目詳解】解:∵二次函數(shù)y=x1+4x+a=(x+1)1﹣4+a,∴二次函數(shù)圖象上的最低點的橫坐標為:﹣1.故答案為﹣1.【題目點撥】此題主要考查了二次函數(shù)的最值,正確得出二次函數(shù)頂點式是解題關(guān)鍵.14、1【分析】根據(jù)拋物線的對稱性知:四邊形ODBG的面積應(yīng)該等于四邊形ODEF的面積;由圖知△ABG和△BCD的面積和是四邊形ODBG與矩形OCBA的面積差,由此得解.【題目詳解】解:由于拋物線的對稱軸是y軸,根據(jù)拋物線的對稱性知:S四邊形ODEF=S四邊形ODBG=10;∴S△ABG+S△BCD=S四邊形ODBG-S四邊形OABC=10-6=1.【題目點撥】本題考查拋物線的對稱性,能夠根據(jù)拋物線的對稱性判斷出四邊形ODEF、四邊形ODBG的面積關(guān)系是解答此題的關(guān)鍵.15、1【分析】根據(jù)一元二次方程的定義可知的次數(shù)為2,列出方程求解即可得出答案.【題目詳解】解:∵是關(guān)于的一元二次方程,∴,解得:m=1,故答案為:1.【題目點撥】本題重點考查一元二次方程定義,理解一元二次方程的三個特點:(1)只含有一個未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(1)是整式方程;其中理解特點(2)是解決這題的關(guān)鍵.16、(3,0)【分析】把交點坐標代入拋物線解析式求m的值,再令y=0解一元二次方程求另一交點的橫坐標.【題目詳解】把點(1,0)代入拋物線y=x2-4x+中,得m=6,所以,原方程為y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴拋物線與x軸的另一個交點的坐標是(3,0).故答案為(3,0).【題目點撥】本題考查了點的坐標與拋物線解析式的關(guān)系,拋物線與x軸交點坐標的求法.本題也可以用根與系數(shù)關(guān)系直接求解.17、1【分析】求得直線與拋物線的交點坐標,從而求得截得的線段的長即可.【題目詳解】解:令y=2得:x2﹣1x+2=2,解得:x=0或x=1,所以交點坐標為(0,2)和(1,2),所以截得的線段長為1﹣0=1,故答案為:1.【題目點撥】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是求得直線與拋物線的交點,難度不大.18、2【解題分析】分析:首先求出方程的根,再根據(jù)三角形三邊關(guān)系定理,確定第三邊的長,進而求其周長.詳解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三邊的邊長<9,∴第三邊的邊長為1.∴這個三角形的周長是3+6+1=2.故答案為2.點睛:本題考查了解一元二次方程和三角形的三邊關(guān)系.已知三角形的兩邊,則第三邊的范圍是:大于已知的兩邊的差,而小于兩邊的和.三、解答題(共66分)19、(1)①∠BAE=90°,②∠EAC=∠ABC;(2)EF是⊙O的切線【分析】(1)若EF是切線,則AB⊥EF,添加的條件只要能使AB⊥EF即可;(2)作直徑AM,連接CM,理由圓周角定理以及直徑所對的圓周角是直角即可.【題目詳解】(1)∠BAE=90°;∠CAE=∠B;(2)EF是⊙O的切線.作直徑AM,連接CM,則∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM為直徑,∴EF是⊙O的切線.20、(1);(2)當降價10元時,每月獲得最大利潤為4500元;(3).【分析】(1)根據(jù)“銷售單價每降1元,則每月可多銷售5張”寫出與的函數(shù)關(guān)系式即可;(2)根據(jù)題意,利用利潤=每件的利潤×數(shù)量即可得出w關(guān)于x的表達式,再利用二次函數(shù)的性質(zhì)即可得到最大值;(3)先求出每月利潤為4220元時對應(yīng)的兩個x值,再根據(jù)二次函數(shù)的圖象和性質(zhì)即可得出答案.【題目詳解】(1)由題意可得:整理得;(2)由題意,得:∵.∴有最大值即當時,∴應(yīng)降價(元)答:當降價10元時,每月獲得最大利潤為4500元;(3)由題意,得:解之,得:,,∵拋物線開口向下,對稱軸為直線,∴.【題目點撥】本題主要考查二次函數(shù)的應(yīng)用,掌握二次函數(shù)的圖象和性質(zhì)以及一元二次方程的解法是解題的關(guān)鍵.21、(1)李明應(yīng)該把鐵絲剪成12cm和28cm的兩段;(2)李明的說法正確,理由見解析.【解題分析】試題分析:(1)設(shè)剪成的較短的這段為xcm,較長的這段就為(40﹣x)cm.就可以表示出這兩個正方形的面積,根據(jù)兩個正方形的面積之和等于58cm2建立方程求出其解即可;(2)設(shè)剪成的較短的這段為mcm,較長的這段就為(40﹣m)cm.就可以表示出這兩個正方形的面積,根據(jù)兩個正方形的面積之和等于48cm2建立方程,如果方程有解就說明李明的說法錯誤,否則正確.試題解析:設(shè)其中一段的長度為cm,兩個正方形面積之和為cm2,則,(其中),當時,,解這個方程,得,,∴應(yīng)將之剪成12cm和28cm的兩段;(2)兩正方形面積之和為48時,,,∵,∴該方程無實數(shù)解,也就是不可能使得兩正方形面積之和為48cm2,李明的說法正確.考點:1.一元二次方程的應(yīng)用;2.幾何圖形問題.22、(1)見解析;(2)AD=1.【分析】(1)根據(jù)切線的性質(zhì)和等腰三角形的判定證明即可;(2)根據(jù)含10°角的直角三角形的性質(zhì)解答即可.【題目詳解】(1)證明:連接OD,∵∠DAC=10°,AO=OD∴∠ADO=∠DAC=10°,∠DOC=60°∵BD是⊙O的切線,∴OD⊥BD,即∠ODB=90°,∴∠B=10°,∴∠DAC=∠B,∴DA=DB,即△ADB是等腰三角形.(2)解:連接DC∵∠DAC=∠B=10°,∴∠DOC=60°,∵OD=OC,∴△DOC是等邊三角形∵⊙O的切線BD交AC的延長線于點B,切點為D,∴BC=DC=OC=,∴AD=.【題目點撥】本題考查切線的判定和性質(zhì),解題的關(guān)鍵是根據(jù)切線的性質(zhì)和等腰三角形的判定,以及勾股定理進行解題.23、(1)見解析;(2)當α=30°時,四邊形AC′EC是菱形,理由見解析;(3)AD+DF=AC,理由見解析【分析】(1)先判斷出∠ACC′=∠AC′C,進而判斷出∠ECC′=∠EC′C,即可得出結(jié)論;

(2)判斷出四邊形AC′EC是平行四邊形,即可得出結(jié)論;

(3)先判斷出HAC′是等邊三角形,得出AH=AC′,∠H=60°,再判斷出△HDF是等邊三角形,即可得出結(jié)論.【題目詳解】(1)證明:如圖2,連接CC′,∵四邊形ABCD是菱形,∴∠ACD=∠AC′B=30°,AC=AC′,∴∠ACC′=∠AC′C,∴∠ECC′=∠EC′C,∴CE=C′E;(2)當α=30°時,四邊形AC′EC是菱形,理由:∵∠DCA=∠CAC′=∠AC′B=30°,∴CE∥AC′,AC∥C′E,∴四邊形AC′EC是平行四邊形,又∵CE=C′E,∴四邊形AC′EC是菱形;(3)AD+DF=AC.理由:如圖4,分別延長CF與AD交于點H,∵∠DAC=∠C′AC=30°,C′F⊥AC,∴∠AC′H=∠DAC′=60°,∴△HAC′是等邊三角形,∴AH=AC′,∠H=60°,又∵AD=DC,∴∠D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論