版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
Chapter10,PartB
ComparisonsInvolvingMeans,
ExperimentalDesign,andAnalysisofVarianceAnIntroductiontoExperimentalDesignandAnalysisofVarianceAnalysisofVarianceandtheCompletelyRandomizedDesignStatisticalstudiescanbeclassifiedasbeingeitherexperimentalorobservational.Inanexperimentalstudy,oneormorefactorsarecontrolledsothatdatacanbeobtainedabouthowthefactorsinfluencethevariablesofinterest.Inanobservationalstudy,noattemptismadetocontrolthefactors.Cause-and-effectrelationshipsareeasiertoestablishinexperimentalstudiesthaninobservationalstudies.AnIntroductiontoExperimentalDesignandAnalysisofVarianceAnalysisofvariance(ANOVA)canbeusedtoanalyzethedataobtainedfromexperimentalorobservationalstudies.AnIntroductiontoExperimentalDesignandAnalysisofVarianceThreetypesofexperimentaldesignsareintroduced.acompletelyrandomizeddesignarandomizedblockdesignafactorialexperimentAnIntroductiontoExperimentalDesignandAnalysisofVarianceAfactorisavariablethattheexperimenterhasselectedforinvestigation.Atreatmentisalevelofafactor.Experimentalunits
aretheobjectsofinterestintheexperiment.Acompletelyrandomizeddesign
isanexperimentaldesigninwhichthetreatmentsarerandomlyassignedtotheexperimentalunits.AnalysisofVariance:AConceptualOverview
AnalysisofVariance(ANOVA)canbeusedtotestfortheequalityofthreeormorepopulationmeans.Dataobtainedfromobservationalorexperimentalstudiescanbeusedfortheanalysis.Wewanttousethesampleresultstotestthefollowinghypotheses:H0:
1
=
2
=
3
=
...=
kHa:NotallpopulationmeansareequalH0:
1
=
2
=
3
=
...=
kHa:NotallpopulationmeansareequalIfH0isrejected,wecannotconcludethatallpopulationmeansaredifferent.RejectingH0meansthatatleasttwopopulationmeanshavedifferentvalues.AnalysisofVariance:AConceptualOverviewForeachpopulation,theresponse(dependent)variableisnormallydistributed.Thevarianceoftheresponsevariable,denoted
2,isthesameforallofthepopulations.Theobservationsmustbeindependent.AssumptionsforAnalysisofVarianceAnalysisofVariance:AConceptualOverviewSamplingDistributionofGivenH0isTrue
SamplemeansareclosetogetherbecausethereisonlyonesamplingdistributionwhenH0istrue.AnalysisofVariance:AConceptualOverviewSamplingDistributionofGivenH0isFalse
3
1
2SamplemeanscomefromdifferentsamplingdistributionsandarenotasclosetogetherwhenH0isfalse.AnalysisofVariance:AConceptualOverviewAnalysisofVarianceBetween-TreatmentsEstimateofPopulationVarianceWithin-TreatmentsEstimateofPopulationVarianceComparingtheVarianceEstimates:TheFTestANOVATableBetween-TreatmentsEstimateofPopulationVariances2DenominatoristhedegreesoffreedomassociatedwithSSTRNumeratoriscalledthesumofsquaresduetotreatments
(SSTR)Theestimateof
2basedonthevariationofthesamplemeansiscalledthemeansquaredueto
treatmentsandisdenotedbyMSTR.Theestimateof
2basedonthevariationofthesampleobservationswithineachsampleiscalledthemeansquareerrorandisdenotedbyMSE.Within-TreatmentsEstimate
ofPopulationVariances2DenominatoristhedegreesoffreedomassociatedwithSSENumeratoriscalledthesumofsquaresduetoerror
(SSE)ComparingtheVarianceEstimates:TheFTestIfthenullhypothesisistrueandtheANOVAassumptionsarevalid,thesamplingdistributionofMSTR/MSEisanFdistributionwithMSTRd.f.equaltok-1andMSEd.f.equaltonT-k.Ifthemeansofthekpopulationsarenotequal,thevalueofMSTR/MSEwillbeinflatedbecauseMSTRoverestimates
2.Hence,wewillrejectH0iftheresultingvalueofMSTR/MSEappearstobetoolargetohavebeenselectedatrandomfromtheappropriateF
distribution.SamplingDistributionofMSTR/MSEDoNotRejectH0RejectH0MSTR/MSECriticalValueF
SamplingDistributionofMSTR/MSEaComparingtheVarianceEstimates:TheFTestSourceofVariationSumofSquaresDegreesofFreedomMeanSquareFTreatmentsErrorTotalk-1nT-1SSTRSSESSTnT-kSSTispartitionedintoSSTRandSSE.SST’sdegreesoffreedom(d.f.)arepartitionedintoSSTR’sd.f.andSSE’sd.f.ANOVATablep-ValueANOVATableSSTdividedbyitsdegreesoffreedomnT–1istheoverallsamplevariancethatwouldbeobtainedifwetreatedtheentiresetofobservationsasonedataset.Withtheentiredatasetasonesample,theformulaforcomputingthetotalsumofsquares,SST,is:ANOVATableANOVAcanbeviewedastheprocessofpartitioningthetotalsumofsquaresandthedegreesoffreedomintotheircorrespondingsources:treatmentsanderror.DividingthesumofsquaresbytheappropriatedegreesoffreedomprovidesthevarianceestimatesandtheFvalueusedtotestthehypothesisofequalpopulationmeans.TestfortheEqualityofkPopulationMeansF=MSTR/MSEH0:
1
=
2
=
3
=
...=
k
Ha:NotallpopulationmeansareequalHypotheses
TestStatistic
TestfortheEqualityofkPopulationMeansRejectionRulewherethevalueofF
isbasedonanFdistributionwithk-1numeratord.f.andnT-kdenominatord.f.RejectH0ifp-value<
ap-valueApproach:CriticalValueApproach:RejectH0ifF
>
FaAutoShine,Inc.isconsideringmarketingalong-lastingcarwax.Threedifferentwaxes(Type1,Type2,andType3)havebeendeveloped.Example:AutoShine,Inc.Inordertotestthedurabilityofthesewaxes,5newcarswerewaxedwithType1,5withType2,and5withType3.Eachcarwasthenrepeatedlyrunthroughanautomaticcarwashuntilthewaxcoatingshowedsignsofdeterioration.TestingfortheEqualityofkPopulationMeans:ACompletelyRandomizedExperimentalDesignThenumberoftimeseachcarwentthroughthecarwashbeforeitswaxdeterioratedisshownonthenextslide.AutoShine,Inc.mustdecidewhichwaxtomarket.Arethethreewaxesequallyeffective? Example:AutoShine,Inc.TestingfortheEqualityofkPopulationMeans:ACompletelyRandomizedExperimentalDesignFactor...CarwaxTreatments...TypeI,Type2,Type3Experimentalunits...CarsResponsevariable...Numberofwashes12345273029283133283130302928303231SampleMeanSampleVarianceObservationWaxType1WaxType2WaxType3
2.5 3.3 2.529.030.4 30.0TestingfortheEqualityofkPopulationMeans:ACompletelyRandomizedExperimentalDesignHypotheseswhere:
1=meannumberofwashesusingType1wax
2=meannumberofwashesusingType2wax
3=meannumberofwashesusingType3waxH0:
1
=
2
=
3
Ha:NotallthemeansareequalTestingfortheEqualityofkPopulationMeans:ACompletelyRandomizedExperimentalDesignBecausethesamplesizesareallequal:MSE=33.2/(15-3)=2.77MSTR=5.2/(3-1)=2.6SSE=4(2.5)+4(3.3)+4(2.5)=33.2SSTR=5(29–29.8)2+5(30.4–29.8)2+5(30–29.8)2=5.2MeanSquareErrorMeanSquareBetweenTreatments=(29+30.4+30)/3=29.8TestingfortheEqualityofkPopulationMeans:ACompletelyRandomizedExperimentalDesignRejectionRulewhereF.05=3.89isbasedonanFdistributionwith2numeratordegreesoffreedomand12denominatordegreesoffreedomp-ValueApproach:RejectH0ifp-value<.05CriticalValueApproach:RejectH0ifF
>3.89TestingfortheEqualityofkPopulationMeans:ACompletelyRandomizedExperimentalDesignTestStatisticThereisinsufficientevidencetoconcludethatthemeannumberofwashesforthethreewaxtypesarenotallthesame.ConclusionF=MSTR/MSE=2.60/2.77=.939Thep-valueisgreaterthan.10,whereF=2.81.(Excelprovidesap-valueof.42.)Therefore,wecannotrejectH0.TestingfortheEqualityofkPopulationMeans:ACompletelyRandomizedExperimentalDesignSourceofVariationSumofSquaresDegreesofFreedomMeanSquaresFTreatmentsErrorTotal2145.233.238.4122.602.77.939ANOVATableTestingfortheEqualityofkPopulationMeans:ACompletelyRandomizedExperimentalDesignp-Value.42Example:ReedManufacturingJanetReedwouldliketoknowifthereisanysignificantdifferenceinthemeannumberofhoursworkedperweekforthedepartmentmanagersatherthreemanufacturingplants(inBuffalo,Pittsburgh,andDetroit).AnFtestwillbeconductedusinga=.05.TestingfortheEqualityofkPopulationMeans:AnObservationalStudyExample:ReedManufacturingAsimplerandomsampleoffivemanagersfromeachofthethreeplantswastakenandthenumberofhoursworkedbyeachmanagerinthepreviousweekisshownonthenextslide.TestingfortheEqualityofkPopulationMeans:AnObservationalStudyFactor...ManufacturingplantTreatments...Buffalo,Pittsburgh,DetroitExperimentalunits...ManagersResponsevariable...Numberofhoursworked12345485457546273636664745163615456Plant1BuffaloPlant2PittsburghPlant3DetroitObservationSampleMeanSampleVariance55 68 5726.0 26.5 24.5TestingfortheEqualityofkPopulationMeans:AnObservationalStudyH0:
1
=
2
=
3
Ha:Notallthemeansareequalwhere:
1=meannumberofhoursworkedper weekbythemanagersatPlant1
2=meannumberofhoursworkedperweekbythemanagersatPlant2
3=meannumberofhoursworkedperweekbythemanagersatPlant31.Developthehypotheses.
p-ValueandCriticalValueApproachesTestingfortheEqualityofkPopulationMeans:AnObservationalStudy2.Specifythelevelofsignificance.a=.05
p-ValueandCriticalValueApproaches3.Computethevalueoftheteststatistic.MSTR=490/(3-1)=245SSTR=5(55-60)2+5(68-60)2+5(57-60)2=490=(55+68+57)/3=60(Samplesizesareallequal.)MeanSquareDuetoTreatmentsTestingfortheEqualityofkPopulationMeans:AnObservationalStudy3.Computethevalueoftheteststatistic.MSE=308/(15-3)=25.667SSE=4(26.0)+4(26.5)+4(24.5)=308MeanSquareDuetoError(con’t.)F=MSTR/MSE=245/25.667=9.55
p-ValueandCriticalValueApproachesTestingfortheEqualityofkPopulationMeans:AnObservationalStudyTreatmentErrorTota
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度房屋置換與家居定制服務合同范本3篇
- 二零二五年度校園雕塑作品采購合同范本3篇
- 2025年度環(huán)境監(jiān)控系統(tǒng)工程合同2篇
- 海南職業(yè)技術學院《文獻檢索》2023-2024學年第一學期期末試卷
- 襄陽汽車課程設計招聘
- 海南師范大學《物流信息技術》2023-2024學年第一學期期末試卷
- 二零二五年度名校學區(qū)二手房買賣合同范本2篇
- 二零二五年度國際貿(mào)易實務:磋商與訂立合同實務操作與法律風險防范手冊9篇
- 二零二五年度海寧房產(chǎn)買賣糾紛調(diào)解及法律援助合同3篇
- 2025年度房地產(chǎn)項目銷售代理合同3篇
- 閱讀理解(專項訓練)-2024-2025學年湘少版英語六年級上冊
- 民用無人駕駛航空器產(chǎn)品標識要求
- 2024年醫(yī)院產(chǎn)科工作計劃例文(4篇)
- 2024-2025學年九年級英語上學期期末真題復習 專題09 單詞拼寫(安徽專用)
- 無創(chuàng)通氣基本模式
- 江西省贛州市尋烏縣2023-2024學年八年級上學期期末檢測數(shù)學試卷(含解析)
- 《臨床放射生物學》課件
- 腸造口還納術手術配合
- 2024年中考語文試題分類匯編:詩詞鑒賞(學生版)
- 科學計算語言Julia及MWORKS實踐 課件 3-MWORKS簡介
- 2024年10月自考04532財務會計專題試題及答案含解析
評論
0/150
提交評論