北京市懷柔區(qū)九級2024屆數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第1頁
北京市懷柔區(qū)九級2024屆數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第2頁
北京市懷柔區(qū)九級2024屆數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第3頁
北京市懷柔區(qū)九級2024屆數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第4頁
北京市懷柔區(qū)九級2024屆數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北京市懷柔區(qū)九級2024屆數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,在△ABC中,過點A作射線AD∥BC,點D不與點A重合,且AD≠BC,連結(jié)BD交AC于點O,連結(jié)CD,設(shè)△ABO、△ADO、△CDO和△BCO的面積分別為S1、S2、SA.S1=C.S1+2.下列事件是必然事件的是()A.明天太陽從西方升起B(yǎng).打開電視機(jī),正在播放廣告C.?dāng)S一枚硬幣,正面朝上D.任意一個三角形,它的內(nèi)角和等于180°3.方程組的解的個數(shù)為()A.1 B.2 C.3 D.44.把拋物線向右平移個單位,再向上平移個單位,得到的拋物線是()A. B. C. D.5.如圖,在Rt△ABC中,AC=6,AB=10,則sinA的值()A. B. C. D.6.如圖,圖1是由5個完全相同的正方體堆成的幾何體,現(xiàn)將標(biāo)有E的正方體平移至如圖2所示的位置,下列說法中正確的是()A.左、右兩個幾何體的主視圖相同B.左、右兩個幾何體的左視圖相同C.左、右兩個幾何體的俯視圖不相同D.左、右兩個幾何體的三視圖不相同7.在平面直角坐標(biāo)系中,拋物線經(jīng)過變換后得到拋物線,則這個變換可以是()A.向左平移2個單位 B.向右平移2個單位C.向左平移8個單位 D.向右平移8個單位8.如圖,在△ABC中,AB=18,BC=15,cosB=,DE∥AB,EF⊥AB,若=,則BE長為()A.7.5 B.9 C.10 D.59.已知點P1(a-1,5)和P2(2,b-1)關(guān)于x軸對稱,則(a+b)2019的值為()A.0 B.﹣1 C.1 D.(3)201910.二次函數(shù)的圖像如圖所示,下面結(jié)論:①;②;③函數(shù)的最小值為;④當(dāng)時,;⑤當(dāng)時,(、分別是、對應(yīng)的函數(shù)值).正確的個數(shù)為()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,,點、都在射線上,,,是射線上的一個動點,過、、三點作圓,當(dāng)該圓與相切時,其半徑的長為__________.12.拋擲一枚質(zhì)地均勻的硬幣2次,2次拋擲的結(jié)果都是正面朝上的概率是____.13.我國經(jīng)典數(shù)學(xué)著作《九章算術(shù)》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.14.飛機(jī)著陸后滑行的距離y(m)與滑行時間x(s)的函數(shù)關(guān)系式為y=﹣x2+60x,則飛機(jī)著陸后滑行_____m才停下來.15.如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)的圖象相交于點和點,則關(guān)于x的不等式的解集是_____.16.從﹣2,﹣1,1,2四個數(shù)中,隨機(jī)抽取兩個數(shù)相乘,積為大于﹣4小于2的概率是_____.17.若,,,則的度數(shù)為__________18.若圓弧所在圓的半徑為12,所對的圓心角為60°,則這條弧的長為_____.三、解答題(共66分)19.(10分)綜合與探究:三角形旋轉(zhuǎn)中的數(shù)學(xué)問題.實驗與操作:

Rt△ABC中,∠ABC=90°,∠ACB=30°.將Rt△ABC繞點A按順時針方向旋轉(zhuǎn)得到Rt△AB′C′(點B′,C′分別是點B,C的對應(yīng)點).設(shè)旋轉(zhuǎn)角為α(0°<α<180°),旋轉(zhuǎn)過程中直線B′B和線段CC′相交于點D.猜想與證明:(1)如圖1,當(dāng)AC′經(jīng)過點B時,探究下列問題:①此時,旋轉(zhuǎn)角α的度數(shù)為°;②判斷此時四邊形AB′DC的形狀,并證明你的猜想;(2)如圖2,當(dāng)旋轉(zhuǎn)角α=90°時,求證:CD=C′D;(3)如圖3,當(dāng)旋轉(zhuǎn)角α在0°<α<180°范圍內(nèi)時,連接AD,直接寫出線段AD與C之間的位置關(guān)系(不必證明).20.(6分)如圖,在平面直角坐標(biāo)系xOy中,曲線經(jīng)過點A.(1)求曲線的表達(dá)式;(2)直線y=ax+3(a≠0)與曲線圍成的封閉區(qū)域為圖象G.①當(dāng)時,直接寫出圖象G上的整數(shù)點個數(shù)是;(注:橫,縱坐標(biāo)均為整數(shù)的點稱為整點,圖象G包含邊界.)②當(dāng)圖象G內(nèi)只有3個整數(shù)點時,直接寫出a的取值范圍.21.(6分)如圖,破殘的圓形輪片上,弦AB的垂直平分線交AB于C,交弦AB于D.(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡);(2)若AB=24cm,CD=8cm,求(1)中所作圓的半徑.22.(8分)在如圖網(wǎng)格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=1.(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;(2)若點B的坐標(biāo)為(﹣3,5),試在圖中畫出直角坐標(biāo)系,并直接寫出A、C兩點的坐標(biāo);(3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2,并直接寫出點A2、B2、C2的坐標(biāo).23.(8分)如圖,AB是⊙O的直徑,過⊙O外一點P作⊙O的兩條切線PC,PD,切點分別為C,D,連接OP,CD.(1)求證:OP⊥CD;(2)連接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的長.24.(8分)如圖,點是正方形邊.上一點,連接,作于點,于點,連接.(1)求證:;(2)己知,四邊形的面積為,求的值.25.(10分)如圖,在中,,的中點.(1)求證:三點在以為圓心的圓上;(2)若,求證:四點在以為圓心的圓上.26.(10分)動畫片《小豬佩奇》分靡全球,受到孩子們的喜愛.現(xiàn)有4張《小豬佩奇》角色卡片,分別是A佩奇,B喬治,C佩奇媽媽,D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同).姐弟兩人做游戲,他們將這四張卡片混在一起,背面朝上放好.(1)姐姐從中隨機(jī)抽取一張卡片,恰好抽到A佩奇的概率為;(2)若兩人分別隨機(jī)抽取一張卡片(不放回),請用列表或畫樹狀圖的分方法求出恰好姐姐抽到A佩奇弟弟抽到B喬治的概率.

參考答案一、選擇題(每小題3分,共30分)1、D【解題分析】根據(jù)同底等高判斷△ABD和△ACD的面積相等,即可得到S1+S2=S3+S2,即【題目詳解】∵△ABD和△ACD同底等高,∴SS1即S△ABC和△DBC同底等高,∴S△ABC∴S故A,B,C正確,D錯誤.故選:D.【題目點撥】考查三角形的面積,掌握同底等高的三角形面積相等是解題的關(guān)鍵.2、D【分析】必然事件就是一定會發(fā)生的事件,依次判斷即可.【題目詳解】A、明天太陽從西方升起,是不可能事件,故不符合題意;B、打開電視機(jī),正在播放廣告是隨機(jī)事件,故不符合題意;C、擲一枚硬幣,正面朝上是隨機(jī)事件,故不符合題意;D、任意一個三角形,它的內(nèi)角和等于180°是必然事件,故符合題意;故選:D.【題目點撥】本題是對必然事件的考查,熟練掌握必然事件知識是解決本題的關(guān)鍵.3、A【分析】分類討論x與y的正負(fù),利用絕對值的代數(shù)意義化簡,求出方程組的解,即可做出判斷.【題目詳解】解:根據(jù)x、y的正負(fù)分4種情況討論:①當(dāng)x>0,y>0時,方程組變形得:,無解;②當(dāng)x>0,y<0時,方程組變形得:,解得x=3,y=2>0,則方程組無解;③當(dāng)x<0,y>0時,方程組變形得:,此時方程組的解為;④當(dāng)x<0,y<0時,方程組變形得:,無解,綜上所述,方程組的解個數(shù)是1.故選:A.【題目點撥】本題考查了解二元一次方程組,利用了分類討論的思想,熟練掌握運算法則是解本題的關(guān)鍵.4、A【分析】根據(jù)拋物線平移的規(guī)律:左加右減,上加下減,即可得解.【題目詳解】由已知,得經(jīng)過平移的拋物線是故答案為A.【題目點撥】此題主要考查拋物線平移的性質(zhì),熟練掌握,即可解題.5、A【分析】根據(jù)勾股定理得出BC的長,再根據(jù)sinA=代值計算即可.【題目詳解】解:∵在Rt△ABC中,AC=6,AB=10,∴BC==8,∴sinA===;故選:A.【題目點撥】本題考查勾股定理及正弦的定義,熟練掌握正弦的表示是解題的關(guān)鍵.6、B【分析】直接利用已知幾何體分別得出三視圖進(jìn)而分析得出答案.【題目詳解】A、左、右兩個幾何體的主視圖為:,故此選項錯誤;B、左、右兩個幾何體的左視圖為:,故此選項正確;C、左、右兩個幾何體的俯視圖為:,故此選項錯誤;D、由以上可得,此選項錯誤;故選B.【題目點撥】此題主要考查了簡單幾何體的三視圖,正確把握觀察的角度是解題關(guān)鍵.7、B【分析】根據(jù)變換前后的兩拋物線的頂點坐標(biāo)找變換規(guī)律.【題目詳解】y=(x+5)(x-3)=(x+1)2-16,頂點坐標(biāo)是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,頂點坐標(biāo)是(1,-16).所以將拋物線y=(x+5)(x-3)向右平移2個單位長度得到拋物線y=(x+3)(x-5),故選B.【題目點撥】此題主要考查了次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.8、C【分析】先設(shè)DE=x,然后根據(jù)已知條件分別用x表示AF、BF、BE的長,由DE∥AB可知,進(jìn)而可求出x的值和BE的長.【題目詳解】解:設(shè)DE=x,則AF=2x,BF=18﹣2x,∵EF⊥AB,∴∠EFB=90°,∵cosB==,∴BE=(18﹣2x),∵DE∥AB,∴,∴∴x=6,∴BE=(18﹣12)=10,故選:C.【題目點撥】本題主要考查了三角形的綜合應(yīng)用,根據(jù)平行線得到相關(guān)線段比例是解題關(guān)鍵.9、B【分析】根據(jù)關(guān)于x軸對稱的點,橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)的概念,求出P1P2的坐標(biāo),得出a,b的值代入(a+b)2019求值即可.【題目詳解】因為關(guān)于x軸對稱橫坐標(biāo)不變,所以,a-1=2,得出a=3,又因為關(guān)于x軸對稱縱坐標(biāo)互為相反數(shù),所以b-1=-5,得出b=-4(a+b)2019=(3-4)2019即.故答案為:B【題目點撥】本題考查關(guān)于x軸對稱的點,橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)的概念和有理數(shù)的冪運算原理,利用-1的偶次冪為1,奇次冪為它本身的原理即可快速得出答案為-1.10、C【分析】由拋物線開口方向可得到a>0;由拋物線過原點得c=0;根據(jù)頂點坐標(biāo)可得到函數(shù)的最小值為-3;根據(jù)當(dāng)x<0時,拋物線都在x軸上方,可得y>0;由圖示知:0<x<2,y隨x的增大而減??;【題目詳解】解:①由函數(shù)圖象開口向上可知,,故此選項正確;②由函數(shù)的圖像與軸的交點在可知,,故此選項正確;③由函數(shù)的圖像的頂點在可知,函數(shù)的最小值為,故此選項正確;④因為函數(shù)的對稱軸為,與軸的一個交點為,則與軸的另一個交點為,所以當(dāng)時,,故此選項正確;⑤由圖像可知,當(dāng)時,隨著的值增大而減小,所以當(dāng)時,,故此選項錯誤;其中正確信息的有①②③④.故選:C.【題目點撥】本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0,拋物線開口向上;對稱軸為直線x=,;拋物線與y軸的交點坐標(biāo)為(0,c);當(dāng)b2-4ac>0,拋物線與x軸有兩個交點;當(dāng)b2-4ac=0,拋物線與x軸有一個交點;當(dāng)b2-4ac<0,拋物線與x軸沒有交點.二、填空題(每小題3分,共24分)11、【分析】圓C過點P、Q,且與相切于點M,連接CM,CP,過點C作CN⊥PQ于N并反向延長,交OB于D,根據(jù)等腰直角三角形的性質(zhì)和垂徑定理,即可求出ON、ND、PN,設(shè)圓C的半徑為r,再根據(jù)等腰直角三角形的性質(zhì)即可用r表示出CD、NC,最后根據(jù)勾股定理列方程即可求出r.【題目詳解】解:如圖所示,圓C過點P、Q,且與相切于點M,連接CM,CP,過點C作CN⊥PQ于N并反向延長,交OB于D∵,,∴PQ=OQ-OP=4根據(jù)垂徑定理,PN=∴ON=PN+OP=4在Rt△OND中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,OD=設(shè)圓C的半徑為r,即CM=CP=r∵圓C與相切于點M,∴∠CMD=90°∴△CMD為等腰直角三角形∴CM=DM=r,CD=∴NC=ND-CD=4-根據(jù)勾股定理可得:NC2+PN2=CP2即解得:(此時DM>OD,點M不在射線OB上,故舍去)故答案為:.【題目點撥】此題考查的是等腰直角三角形的判定及性質(zhì)、垂徑定理、勾股定理和切線的性質(zhì),掌握垂徑定理和勾股定理的結(jié)合和切線的性質(zhì)是解決此題的關(guān)鍵.12、【解題分析】試題分析:列舉出所有情況,看所求的情況占總情況的多少即可.共有正反,正正,反正,反反4種可能,則2次拋擲的結(jié)果都是正面朝上的概率為.故答案為.考點:概率公式.13、(x+1);.【解題分析】試題分析:設(shè)水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應(yīng)用.14、600【分析】根據(jù)飛機(jī)從滑行到停止的路程就是滑行的最大路程,即是求函數(shù)的最大值.【題目詳解】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20時,y取得最大值,此時y=600,即該型號飛機(jī)著陸后滑行600m才能停下來.故答案為600.【題目點撥】本題主要考查了二次函數(shù)的應(yīng)用,運用二次函數(shù)求最值問題常用公式法或配方法得出是解題關(guān)鍵.15、-6<x<0或x>2;【解題分析】觀察一次函數(shù)和反比例函數(shù)圖象,一次函數(shù)比反比例函數(shù)高的部分就是所求.【題目詳解】解:本題初中階段只能用數(shù)形結(jié)合,由圖知-6<x<0或x>2;點睛:利用一次函數(shù)圖象和反比例函數(shù)圖象性質(zhì)數(shù)形結(jié)合解不等式:形如式不等式,構(gòu)造函數(shù),=,如果,找出比,高的部分對應(yīng)的x的值,,找出比,低的部分對應(yīng)的x的值.16、【分析】列表得出所有等可能結(jié)果,從中找到積為大于-4小于2的結(jié)果數(shù),根據(jù)概率公式計算可得.【題目詳解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結(jié)果,其中積為大于-4小于2的有6種結(jié)果,∴積為大于-4小于2的概率為=,故答案為.【題目點撥】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、【分析】先根據(jù)三角形相似求,再根據(jù)三角形內(nèi)角和計算出的度數(shù).【題目詳解】解:如圖:∵∠A=50°,,

∴∵,

故答案為.【題目點撥】本題考查了相似三角形的性質(zhì):相似三角形的對應(yīng)角相等.18、4π【分析】直接利用弧長公式計算即可求解.【題目詳解】l==4π,故答案為:4π.【題目點撥】本題考查弧長計算公式,解題的關(guān)鍵是掌握:弧長l=(n是弧所對應(yīng)的圓心角度數(shù))三、解答題(共66分)19、(1)①60;②四邊形AB′DC是平行四邊形,證明見解析.(2)證明見解析;(3)【分析】(1)①根據(jù)矩形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定方法解題;②根據(jù)兩組對邊分別平行的四邊形是平行四邊形解題;(2)過點作的垂線,交于點E,由旋轉(zhuǎn)的性質(zhì)得到對應(yīng)邊、對應(yīng)角相等,進(jìn)而證明△CDB≌△,即可解題;(3)先證明,再由相似三角形的性質(zhì)解題,進(jìn)而證明即可證明.【題目詳解】解:(1)①60;②四邊形AB′DC是平行四邊形.證明:∵∠ABC=90°,∠ACB=30°,∴∠CAB=90°-30°=60°.∵Rt△AB′C′是由Rt△ABC繞點A順時針旋轉(zhuǎn)得到的,∴∠C′AB′=∠CAB=60°,,.與都是等邊三角形.∴∠ACC′=∠AB′B=60°.∵∠CAB′=∠CAB+∠C′AB′=120°,∴∠ACC′+∠CAB′=180°,∠CAB′+∠ABB′=180°.∴AB′//CD,AC//B′D.∴四邊形AB′DC是平行四邊形.(2)證明:過點作的垂線,交于點E,∴∠B′C′E=90°.∵Rt△AB′C′是由Rt△ABC繞點A順時針旋轉(zhuǎn)90°得到的,∴∠CAC′=∠BAB′=∠B′C′E=90°,,.∴∠AB=∠AB=45°,BC∥AB′∥C′E∵∠AC=∠ABC=90°,∴∠B=∠CBE=45°.∴∠=90°-45°=45°=∠B.∴.在△CBD和△ED中,∴△CDB≌△DE.∴CD=D.(3)AD⊥C,理由如下:設(shè)AC與D交于點O,連接AD,∴∠ADC′=180°-∠DAO-∠AC′C=180°-∠OB′C′-∠AB′B,,

【題目點撥】本題考查幾何綜合,其中涉及三角形的旋轉(zhuǎn)、等邊三角形的判定與性質(zhì)、平行線的判定、平行四邊形的判定、全等三角形的判定等知識,綜合性較強(qiáng),是常見考點,掌握相關(guān)知識、學(xué)會作適當(dāng)輔助線是解題關(guān)鍵.20、(1)y=;(2)①3;②-1≤a-【分析】(1)由題意代入A點坐標(biāo),求出曲線的表達(dá)式即可;(2)①當(dāng)時,根據(jù)圖像直接寫出圖象G上的整數(shù)點個數(shù)即可;②當(dāng)圖象G內(nèi)只有3個整數(shù)點時,根據(jù)圖像直接寫出a的取值范圍.【題目詳解】解:(1)∵A(1,1),∴k=1,∴.(2)①觀察圖形時,可知個數(shù)為3;②觀察圖像得到.【題目點撥】本題考查反比例函數(shù)圖像相關(guān)性質(zhì),熟練掌握反比例函數(shù)圖像相關(guān)性質(zhì)是解題關(guān)鍵.21、(1)答案見解析;(2)13cm【分析】(1)根據(jù)垂徑定理,即可求得圓心;(2)連接OA,根據(jù)垂徑定理與勾股定理,即可求得圓的半徑長.【題目詳解】解:(1)連接BC,作線段BC的垂直平分線交直線CD與點O,以點O為圓心,OA長為半徑畫圓,圓O即為所求;(2)如圖,連接OA∵OD⊥AB∴AD=AB=12cm設(shè)圓O半徑為r,則OA=r,OD=r-8直角三角形AOD中,AD2+OD2=OA2∴122+(r-8)2=r2∴r=13∴圓O半徑為13cm【題目點撥】本題考查了垂徑定理的應(yīng)用,解答本題的關(guān)鍵是熟練掌握圓中任意兩條弦的垂直平分線的交點即為圓心.22、(1)見解析;(2)(0,1),(﹣3,1);(3)(0,﹣1),(3,﹣5),(3,﹣1).【分析】(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出B、C的對應(yīng)點B1、C1即可;(2)利用B點坐標(biāo)畫出直角坐標(biāo)系,然后寫出A、C的坐標(biāo);(3)利用關(guān)于原點對稱的點的坐標(biāo)特征寫出點A2、B2、C2的坐標(biāo),然后描點即可.【題目詳解】解:(1)如圖,△AB1C1為所作;(2)如圖,A點坐標(biāo)為(0,1),C點的坐標(biāo)為(﹣3,1);(3)如圖,△A2B2C2為所作,點A2、B2、C2的坐標(biāo)煩惱為(0,﹣1),(3,﹣5),(3,﹣1).【題目點撥】本題考查的是平面直角坐標(biāo)系,需要熟練掌握旋轉(zhuǎn)的性質(zhì)以及平面直角坐標(biāo)系中點的特征.23、(1)詳見解析;(2).【分析】(1)方法1、先判斷出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出結(jié)論;

方法2、判斷出OP是CD的垂直平分線,即可得出結(jié)論;

(2)先求出∠COD=60°,得出△OCD是等邊三角形,最后用銳角三角函數(shù)即可得出結(jié)論.【題目詳解】解:(1)方法1、連接OC,OD,∴OC=OD,∵PD,PC是⊙O的切線,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP(HL),∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;方法2、∵PD,PC是⊙O的切線,∴PD=PC,∵OD=OC,∴P,O在CD的中垂線上,∴OP⊥CD(2)如圖,連接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等邊三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【題目點撥】本題考查圓周角定理、切線的性質(zhì)、全等三角形的判定(HL)和性質(zhì)和銳角三角函數(shù),解題的關(guān)鍵是掌握圓周角定理、切線的性質(zhì)、全等三角形的判定(HL)和性質(zhì)和銳角三角函數(shù).24、(1)見解析;(2)【分析】(1)首先由正方形的性質(zhì)得出BA=AD,∠BAD=90°,又由DE⊥AM于點E,BF⊥AM得出∠AFB=90°,∠DEA=90°,∠ABF=∠EAD,然后即可判定△ABF≌△DAE,即可得出BF=AE;(2)首先設(shè)AE=x,則BF=x,DE=AF=2,然后將四邊形的面積轉(zhuǎn)化為兩個三角形的面積之和,列出方程,得出BF,然后利用勾股定理得出BE,即可得解.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論