版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題21圖形的變化姓名:__________________班級:______________得分:_________________一、單選題1.(2021·廣東廣州·中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0繞點A逆時針旋轉(zhuǎn)得到SKIPIF1<0,使點SKIPIF1<0落在AB邊上,連結(jié)SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由勾股定理求出SKIPIF1<0,并利用旋轉(zhuǎn)性質(zhì)得出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則可求得SKIPIF1<0,再根據(jù)勾股定理求出SKIPIF1<0,最后由三角形函數(shù)的定義即可求得結(jié)果.【解析】解:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由勾股定理得:SKIPIF1<0.∵SKIPIF1<0繞點A逆時針旋轉(zhuǎn)得到SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0.∴在SKIPIF1<0中,由勾股定理得SKIPIF1<0.∴SKIPIF1<0.故選:C.【點睛】本題考查了求角的三角形函數(shù)值,掌握三角形函數(shù)的概念并利用勾股定理及旋轉(zhuǎn)的性質(zhì)求解是解題的關(guān)鍵.2.(2021·黑龍江牡丹江·中考真題)如圖,△AOB中,OA=4,OB=6,AB=2SKIPIF1<0,將△AOB繞原點O旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點A′的坐標是()A.(4,2)或(﹣4,2) B.(2SKIPIF1<0,﹣4)或(﹣2SKIPIF1<0,4)C.(﹣2SKIPIF1<0,2)或(2SKIPIF1<0,﹣2) D.(2,﹣2SKIPIF1<0)或(﹣2,2SKIPIF1<0)【答案】C【分析】先求出點A的坐標,再根據(jù)旋轉(zhuǎn)變換中,坐標的變換特征求解;或根據(jù)題意畫出圖形旋轉(zhuǎn)后的位置,根據(jù)旋轉(zhuǎn)的性質(zhì)確定對應(yīng)點A′的坐標.【解析】過點A作SKIPIF1<0于點C.在Rt△AOC中,SKIPIF1<0.在Rt△ABC中,SKIPIF1<0.∴SKIPIF1<0.∵OA=4,OB=6,AB=2SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0.∴點A的坐標是SKIPIF1<0.根據(jù)題意畫出圖形旋轉(zhuǎn)后的位置,如圖,∴將△AOB繞原點O順時針旋轉(zhuǎn)90°時,點A的對應(yīng)點A′的坐標為SKIPIF1<0;將△AOB繞原點O逆時針旋轉(zhuǎn)90°時,點A的對應(yīng)點A′′的坐標為SKIPIF1<0.故選:C.【點睛】本題考查了解直角三角形、旋轉(zhuǎn)中點的坐標變換特征及旋轉(zhuǎn)的性質(zhì).(a,b)繞原點順時針旋轉(zhuǎn)90°得到的坐標為(b,-a),繞原點逆時針旋轉(zhuǎn)90°得到的坐標為(-b,a).3.(2021·遼寧大連·中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0繞點C順時針旋轉(zhuǎn)90°得到SKIPIF1<0,點B的對應(yīng)點SKIPIF1<0在邊SKIPIF1<0上(不與點A,C重合),則SKIPIF1<0的度數(shù)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由旋轉(zhuǎn)的性質(zhì)可得SKIPIF1<0,SKIPIF1<0,進而可得SKIPIF1<0,然后問題可求解.【解析】解:由旋轉(zhuǎn)的性質(zhì)可得:SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0等腰直角三角形,∴SKIPIF1<0,∴SKIPIF1<0;故選C.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.4.(2021·湖北黃石·中考真題)如圖,SKIPIF1<0的三個頂點都在方格紙的格點上,其中SKIPIF1<0點的坐標是SKIPIF1<0,現(xiàn)將SKIPIF1<0繞SKIPIF1<0點按逆時針方向旋轉(zhuǎn)SKIPIF1<0,則旋轉(zhuǎn)后點SKIPIF1<0的坐標是()
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】在網(wǎng)格中繪制出CA旋轉(zhuǎn)后的圖形,得到點C旋轉(zhuǎn)后對應(yīng)點.【解析】如圖,繪制出CA繞點A逆時針旋轉(zhuǎn)90°的圖形,由圖可得:點C對應(yīng)點SKIPIF1<0的坐標為(-2,3).故選B.【點睛】本題考查旋轉(zhuǎn),需要注意題干中要求順時針旋轉(zhuǎn)還是逆時針旋轉(zhuǎn).5.(2021·黑龍江大慶·中考真題)如圖,SKIPIF1<0是線段SKIPIF1<0上除端點外的一點,將SKIPIF1<0繞正方形SKIPIF1<0的頂點SKIPIF1<0順時針旋轉(zhuǎn)SKIPIF1<0,得到SKIPIF1<0.連接SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.下列結(jié)論正確的是()
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△EAF是等腰直角三角形,然后根據(jù)相似三角形的判定和性質(zhì),以及平行線分線段成比例定理即可作出判斷.【解析】解:根據(jù)旋轉(zhuǎn)的性質(zhì)知:∠EAF=90°,故A選項錯誤;根據(jù)旋轉(zhuǎn)的性質(zhì)知:∠EAF=90°,EA=AF,則△EAF是等腰直角三角形,∴EF=SKIPIF1<0AE,即AE:EF=1:SKIPIF1<0,故B選項錯誤;若C選項正確,則SKIPIF1<0,即SKIPIF1<0,∵∠AEF=∠HEA=45°,∴△EAFSKIPIF1<0△EHA,∴∠EAHSKIPIF1<0∠EFA,而∠EFA=45°,∠EAHSKIPIF1<045°,∴∠EAHSKIPIF1<0∠EFA,∴假設(shè)不成立,故C選項錯誤;∵四邊形ABCD是正方形,∴CD∥AB,即BH∥CF,AD=BC,∴EB:BC=EH:HF,即EB:AD=EH:HF,故D選項正確;故選:D【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),相似三角形的判定和性質(zhì),平行線分線段成比例定理,正確運用反證法是解題的關(guān)鍵.6.(2021·山東青島·中考真題)如圖,在四邊形紙片SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.將紙片折疊,使點SKIPIF1<0落在SKIPIF1<0邊上的點SKIPIF1<0處,折痕為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的長為()A.5 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】過點A作SKIPIF1<0于H,由折疊知識得:SKIPIF1<0,再由銳角三角函數(shù)可得SKIPIF1<0,然后根據(jù)SKIPIF1<0,可證得四邊形AHFG是矩形,即可求解.【解析】解:過點A作SKIPIF1<0于H,由折疊知:BF=GF,∠BFE=∠GFE,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形AHFG是矩形,SKIPIF1<0,SKIPIF1<0.故選:C.【點睛】本題主要考查了折疊變換,解直角三角形,矩形的判定和性質(zhì),熟練掌握相關(guān)知識點是解題的關(guān)鍵.7.(2021·山東濟南·中考真題)新定義:在平面直角坐標系中,對于點SKIPIF1<0和點SKIPIF1<0,若滿足SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0時,SKIPIF1<0,則稱點SKIPIF1<0是點SKIPIF1<0的限變點.例如:點SKIPIF1<0的限變點是SKIPIF1<0,點SKIPIF1<0的限變點是SKIPIF1<0.若點SKIPIF1<0在二次函數(shù)SKIPIF1<0的圖象上,則當SKIPIF1<0時,其限變點SKIPIF1<0的縱坐標SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意,當SKIPIF1<0時,SKIPIF1<0的圖象向下平移4個單位,當SKIPIF1<0時,,SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱,據(jù)此即可求得其限變點SKIPIF1<0的縱坐標SKIPIF1<0的取值范圍,作出函數(shù)圖像,直觀的觀察可得到SKIPIF1<0的取值范圍【解析】SKIPIF1<0點SKIPIF1<0在二次函數(shù)SKIPIF1<0的圖象上,則當SKIPIF1<0時,其限變點SKIPIF1<0的圖像即為圖中虛線部分,如圖,當SKIPIF1<0時,SKIPIF1<0的圖象向下平移4個單位,當SKIPIF1<0時,SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱,從圖可知函數(shù)的最大值是當SKIPIF1<0時,SKIPIF1<0取得最大值3,最小值是當SKIPIF1<0時,SKIPIF1<0取得最小值SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故選D.【點睛】本題考查了新定義,二次函數(shù)的最值問題,分段討論函數(shù)的最值,可以通過函數(shù)圖像輔助求解,理解新定義,畫出函數(shù)圖像是解題的關(guān)鍵.8.(2021·西藏·中考真題)如圖,在Rt△ABC中,∠A=30°,∠C=90°,AB=6,點P是線段AC上一動點,點M在線段AB上,當AM=SKIPIF1<0AB時,PB+PM的最小值為()A.3SKIPIF1<0 B.2SKIPIF1<0 C.2SKIPIF1<0+2 D.3SKIPIF1<0+3【答案】B【分析】作B點關(guān)于AC的對稱點B',連接B'M交AC于點P,則PB+PM的最小值為B'M的長,過點B'作B'H⊥AB交H點,在Rt△BB'H中,B'H=3SKIPIF1<0,HB=3,可求MH=1,在Rt△MHB'中,B'M=2SKIPIF1<0,所以PB+PM的最小值為2SKIPIF1<0.【解析】解:作B點關(guān)于AC的對稱點B',連接B'M交AC于點P,∴BP=B'P,BC=B'C,∴PB+PM=B'P+PM≥B'M,∴PB+PM的最小值為B'M的長,過點B'作B'H⊥AB交H點,∵∠A=30°,∠C=90°,∴∠CBA=60°,∵AB=6,∴BC=3,∴BB'=BC+B'C=6,在Rt△BB'H中,∠B'BH=60°,∴∠BB'H=30°,∴BH=3,由勾股定理可得:SKIPIF1<0,∴AH=AB-BH=3,∵AM=SKIPIF1<0AB,∴AM=2,∴MH=AH-AM=1,在Rt△MHB'中,SKIPIF1<0,∴PB+PM的最小值為2SKIPIF1<0,故選:B.【點睛】本題考查軸對稱—最短路線問題,涉及到解直角三角形,解題的關(guān)鍵是做輔助線,找出PB+PM的最小值為B'M的長.9.(2021·內(nèi)蒙古鄂爾多斯·中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0,將邊SKIPIF1<0沿SKIPIF1<0折疊,使點B落在SKIPIF1<0上的點SKIPIF1<0處,再將邊SKIPIF1<0沿SKIPIF1<0折疊,使點A落在SKIPIF1<0的延長線上的點SKIPIF1<0處,兩條折痕與斜邊SKIPIF1<0分別交于點N、M,則線段SKIPIF1<0的長為()
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用勾股定理求出AB=10,利用等積法求出CN=SKIPIF1<0,從而得AN=SKIPIF1<0,再證明∠NMC=∠NCM=45°,進而即可得到答案.【解析】解:∵SKIPIF1<0∴AB=SKIPIF1<0,∵S△ABC=SKIPIF1<0×AB×CN=SKIPIF1<0×AC×BC∴CN=SKIPIF1<0,∵AN=SKIPIF1<0,∵折疊∴AM=A'M,∠BCN=∠B'CN,∠ACM=∠A'CM,∵∠BCN+∠B'CN+∠ACM+∠A'CM=90°,∴∠B'CN+∠A'CM=45°,∴∠MCN=45°,且CN⊥AB,∴∠NMC=∠NCM=45°,∴MN=CN=SKIPIF1<0,∴A'M=AM=AN?MN=SKIPIF1<0-SKIPIF1<0=SKIPIF1<0.故選B.【點睛】本題考查了翻折變換,勾股定理,等腰直角三角形的性質(zhì),熟練運用折疊的性質(zhì)是本題的關(guān)鍵.10.(2021·四川宜賓·中考真題)如圖,在矩形紙片ABCD中,點E、F分別在矩形的邊AB、AD上,將矩形紙片沿CE、CF折疊,點B落在H處,點D落在G處,點C、H、G恰好在同一直線上,若AB=6,AD=4,BE=2,則DF的長是()A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】A【分析】構(gòu)造如圖所示的正方形SKIPIF1<0,然后根據(jù)相似三角形的判定和性質(zhì)解直角三角形FNP即可.【解析】如圖,延長CE,F(xiàn)G交于點N,過點N作SKIPIF1<0,延長SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,∴∠CMN=∠DPN=90°,∴四邊形CMPD是矩形,根據(jù)折疊,∠MCN=∠GCN,CD=CG,SKIPIF1<0,∵∠CMN=∠CGN=90°,CN=CN,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0四邊形SKIPIF1<0為正方形,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,由SKIPIF1<0可得SKIPIF1<0解得SKIPIF1<0;故選A.【點睛】本題考查了折疊問題,正方形的性質(zhì)與判定,矩形的性質(zhì),平行線的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形,勾股定理等知識點的綜合運用,難度較大.作出合適的輔助線是解題的關(guān)鍵.11.(2021·江蘇蘇州·中考真題)如圖,在平行四邊形SKIPIF1<0中,將SKIPIF1<0沿著SKIPIF1<0所在的直線翻折得到SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的長是()
A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用平行四邊形的性質(zhì)、翻折不變性可得△AEC為等腰直角三角形,根據(jù)已知條件可得CE得長,進而得出ED的長,再根據(jù)勾股定理可得出SKIPIF1<0;【解析】解:∵四邊形SKIPIF1<0是平行四邊形∴AB=CD∠B=∠ADC=60°,∠ACB=∠CAD由翻折可知:BA=AB′=DC,∠ACB=∠ACB′=45°,∴△AEC為等腰直角三角形∴AE=CE∴Rt△AEB′≌Rt△CDE∴EB′=DE∵在等腰Rt△AEC中,SKIPIF1<0∴SKIPIF1<0∵在Rt△DEC中,SKIPIF1<0,∠ADC=60°∴∠DCE=30°∴DE=1在等腰Rt△DEB′中,EB′=DE=1∴SKIPIF1<0=SKIPIF1<0故選:B【點睛】本題考查翻折變換、等腰三角形的性質(zhì)、勾股定理、平行四邊形的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.第II卷(非選擇題)請點擊修改第II卷的文字說明二、填空題12.(2021·山東聊城·中考真題)有四張大小和背面完全相同的不透明卡片,正面分別印有等邊三角形、平行四邊形、菱形和圓,將這四張卡片背面朝上洗勻,從中隨機抽取兩張卡片,所抽取的卡片正面上的圖形都既是軸對稱圖形,又是中心對稱圖形的概率是__________.【答案】SKIPIF1<0【分析】由等邊三角形、平行四邊形、菱形、圓中,既是中心對稱圖形,又是軸對稱圖形的有菱形、圓,再畫出樹狀圖展示所有等可能的結(jié)果,進而即可求得答案.【解析】解:設(shè)等邊三角形、平行四邊形、菱形、圓分別為A,B,C,D,根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形既是中心對稱圖形,又是軸對稱圖形為C、D共有2種情況,∴P(既是中心對稱圖形,又是軸對稱圖形)=2÷12=SKIPIF1<0.故答案是:SKIPIF1<0.【點睛】本題考查了列表法和樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比,畫出樹狀圖,是解題的關(guān)鍵.13.(2021·廣西桂林·中考真題)如圖,正方形OABC的邊長為2,將正方形OABC繞點O逆時針旋轉(zhuǎn)角α(0°<α<180°)得到正方形OA′B′C′,連接BC′,當點A′恰好落在線段BC′上時,線段BC′的長度是___.【答案】SKIPIF1<0【分析】連接AA′,根據(jù)旋轉(zhuǎn)和正方形的性質(zhì)得出∠OA′C′=45°,∠BA′O=135°,OA=OA′=AB=2,再根據(jù)等腰三角形的性質(zhì),結(jié)合已知條件得出旋轉(zhuǎn)角SKIPIF1<0,然后利用三角形的性質(zhì)和勾股定理得出答案;【解析】解:連接AA′,∵將正方形OABC繞點O逆時針旋轉(zhuǎn)角α(0°<α<180°)得到正方形OA′B′C′,連接BC′,當點A′恰好落在線段BC′∴∠OA′C′=45°,∠BA′O=135°,OA=OA′=AB=2,∴∠OA′A=∠OAA′=SKIPIF1<0,∴∠BAA′=SKIPIF1<0,∴∠ABA′=∠AA′B=SKIPIF1<0,∴∠BA′O=135°=∠AA′B+∠OA′A,∴SKIPIF1<0,∴SKIPIF1<0,∠A′AB=30°,∴△OAA′為等邊三角形,∴AA′=AB=2,過點A′作A′E⊥AB于E,∵∠A′AB=30°,則A′E=SKIPIF1<0,AE=SKIPIF1<0,∴BE=SKIPIF1<0,∴A′B=SKIPIF1<0,∵A′C′=SKIPIF1<0,∴BC′=A′B+A′C′=SKIPIF1<0;故答案為:SKIPIF1<0【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、等腰直角三角形以及勾股定理,解題的關(guān)鍵是得出旋轉(zhuǎn)角SKIPIF1<0得出△OAA′為等邊三角形.14.(2021·遼寧丹東·中考真題)已知:到三角形3個頂點距離之和最小的點稱為該三角形的費馬點.如果SKIPIF1<0是銳角(或直角)三角形,則其費馬點P是三角形內(nèi)一點,且滿足SKIPIF1<0.(例如:等邊三角形的費馬點是其三條高的交點).若SKIPIF1<0,P為SKIPIF1<0的費馬點,則SKIPIF1<0_________;若SKIPIF1<0,P為SKIPIF1<0的費馬點,則SKIPIF1<0_________.【答案】5SKIPIF1<0【分析】①作出圖形,過SKIPIF1<0分別作SKIPIF1<0,勾股定理解直角三角形即可②作出圖形,將SKIPIF1<0繞點SKIPIF1<0逆時針旋轉(zhuǎn)60SKIPIF1<0,P為SKIPIF1<0的費馬點則SKIPIF1<0四點共線,即SKIPIF1<0SKIPIF1<0,再用勾股定理求得即可【解析】①如圖,過SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0,過SKIPIF1<0分別作SKIPIF1<0,則SKIPIF1<0,P為SKIPIF1<0的費馬點SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<05②如圖:SKIPIF1<0SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0將SKIPIF1<0繞點SKIPIF1<0逆時針旋轉(zhuǎn)60SKIPIF1<0由旋轉(zhuǎn)可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0是等邊三角形,SKIPIF1<0SKIPIF1<0SKIPIF1<0P為SKIPIF1<0的費馬點即SKIPIF1<0四點共線時候,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0=SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案為:①5,②SKIPIF1<0【點睛】本題考查了勾股定理,旋轉(zhuǎn)的性質(zhì),銳角三角函數(shù),等腰三角形性質(zhì),作出旋轉(zhuǎn)的圖形是解題的關(guān)鍵.本題旋轉(zhuǎn)SKIPIF1<0也可,但必須繞頂點旋轉(zhuǎn).15.(2021·四川巴中·中考真題)如圖,把邊長為3的正方形OABC繞點O逆時針旋轉(zhuǎn)n°(0<n<90)得到正方形ODEF,DE與BC交于點P,ED的延長線交AB于點Q,交OA的延長線于點M.若BQ:AQ=3:1,則AM=__________.【答案】SKIPIF1<0【分析】連接OQ,OP,利用HL證明Rt△OAQ≌Rt△ODQ,得QA=DQ,同理可證:CP=DP,設(shè)CP=x,則BP=3-x,PQ=x+SKIPIF1<0,在Rt△BPQ中,利用勾股定理列出方程求出x=SKIPIF1<0,再利用△AQM∽△BQP可求解.【解析】解:連接OQ,OP,∵將正方形OABC繞點O逆時針旋轉(zhuǎn)n°(0<n<90)得到正方形ODEF,∴OA=OD,∠OAQ=∠ODQ=90°,在Rt△OAQ和Rt△ODQ中,SKIPIF1<0,∴Rt△OAQ≌Rt△ODQ(HL),∴QA=DQ,同理可證:CP=DP,∵BQ:AQ=3:1,AB=3,∴BQ=SKIPIF1<0,AQ=SKIPIF1<0,設(shè)CP=x,則BP=3-x,PQ=x+SKIPIF1<0,在Rt△BPQ中,由勾股定理得:(3-x)2+(SKIPIF1<0)2=(x+SKIPIF1<0)2,解得x=SKIPIF1<0,∴BP=SKIPIF1<0,∵∠AQM=∠BQP,∠BAM=∠B,∴△AQM∽△BQP,∴SKIPIF1<0,∴SKIPIF1<0,∴AM=SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,相似三角形的判定與性質(zhì)等知識,利用全等證明QA=DQ,CP=DP是解題的關(guān)鍵.16.(2021·湖南益陽·中考真題)如圖,SKIPIF1<0中,SKIPIF1<0,將SKIPIF1<0繞A點順時針方向旋轉(zhuǎn)角SKIPIF1<0得到SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的面積之比等于_______.【答案】SKIPIF1<0【分析】先根據(jù)正切三角函數(shù)的定義可得SKIPIF1<0,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得SKIPIF1<0,從而可得SKIPIF1<0,然后根據(jù)相似三角形的判定可得SKIPIF1<0,最后根據(jù)相似三角形的性質(zhì)即可得.【解析】解:SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,由旋轉(zhuǎn)的性質(zhì)得:SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0的面積之比等于SKIPIF1<0,故答案為:SKIPIF1<0.【點睛】本題考查了正切三角函數(shù)、旋轉(zhuǎn)的性質(zhì)、相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解題關(guān)鍵.17.(2021·廣西玉林·中考真題)如圖、在正六邊形SKIPIF1<0中,連接線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0交于點SKIPIF1<0,分別延長SKIPIF1<0,SKIPIF1<0于點SKIPIF1<0,設(shè)SKIPIF1<0.有以下結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0的重心、內(nèi)心及外心均是點SKIPIF1<0;④四邊形SKIPIF1<0繞點SKIPIF1<0逆時針旋轉(zhuǎn)SKIPIF1<0與四邊形SKIPIF1<0重合.則所有正確結(jié)論的序號是______.
【答案】①②③【分析】由題意易得SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,進而可得SKIPIF1<0,則有四邊形SKIPIF1<0是矩形,然后可得SKIPIF1<0,SKIPIF1<0為等邊三角形,最后可得答案.【解析】解:∵六邊形SKIPIF1<0是正六邊形,∴SKIPIF1<0,SKIPIF1<0,∴在△DEF中,SKIPIF1<0,∴SKIPIF1<0,同理可得SKIPIF1<0,∴四邊形SKIPIF1<0是矩形,同理可證四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,∵SKIPIF1<0,∴SKIPIF1<0(ASA),∴SKIPIF1<0,∴四邊形SKIPIF1<0是菱形,∴SKIPIF1<0,∴∠NAM=60°,∴△NAM是等邊三角形,∴AM=MN,∵AB=3,∴SKIPIF1<0,∴SKIPIF1<0,∵∠MAB=30°,∠ACG=90°,∴∠G=60°,∴△ADG是等邊三角形,∵AC與BD交于點M,∴由等邊三角形的性質(zhì)及重心、內(nèi)心、外心可得:SKIPIF1<0的重心、內(nèi)心及外心均是點SKIPIF1<0,連接OF,如圖所示:
易得∠FOA=60°,∴四邊形SKIPIF1<0繞點SKIPIF1<0逆時針旋轉(zhuǎn)SKIPIF1<0與四邊形SKIPIF1<0重合,∴綜上所述:正確結(jié)論的序號是①②③;故答案為①②③.【點睛】本題主要考查正多邊形的性質(zhì)、矩形及菱形的判定與性質(zhì)、等邊三角形的性質(zhì)與判定、三角形的重心、內(nèi)心、外心及三角函數(shù),熟練掌握正多邊形的性質(zhì)、矩形及菱形的判定與性質(zhì)、等邊三角形的性質(zhì)與判定、三角形的重心、內(nèi)心、外心及三角函數(shù)是解題的關(guān)鍵.18.(2021·江蘇蘇州·中考真題)如圖,射線SKIPIF1<0、SKIPIF1<0互相垂直,SKIPIF1<0,點SKIPIF1<0位于射線SKIPIF1<0的上方,且在線段SKIPIF1<0的垂直平分線SKIPIF1<0上,連接SKIPIF1<0,SKIPIF1<0.將線段SKIPIF1<0繞點SKIPIF1<0按逆時針方向旋轉(zhuǎn)得到對應(yīng)線段SKIPIF1<0,若點SKIPIF1<0恰好落在射線SKIPIF1<0上,則點SKIPIF1<0到射線SKIPIF1<0的距離SKIPIF1<0______.
【答案】SKIPIF1<0【分析】添加輔助線,連接SKIPIF1<0,過SKIPIF1<0點作SKIPIF1<0交ON與點P.根據(jù)旋轉(zhuǎn)的性質(zhì),得到SKIPIF1<0,在SKIPIF1<0和中,SKIPIF1<0,根據(jù)三角函數(shù)和已知線段的長度求出點SKIPIF1<0到射線SKIPIF1<0的距離SKIPIF1<0.【解析】如圖所示,連接SKIPIF1<0,過SKIPIF1<0點作SKIPIF1<0交ON與點P.
∵線段SKIPIF1<0繞點SKIPIF1<0按逆時針方向旋轉(zhuǎn)得到對應(yīng)線段SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0即SKIPIF1<0∵點SKIPIF1<0在線段SKIPIF1<0的垂直平分線SKIPIF1<0上∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì)和三角函數(shù).對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)點與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角,旋轉(zhuǎn)前、后的圖形全等.19.(2021·上?!ぶ锌颊骖})定義:在平面內(nèi),一個點到圖形的距離是這個點到這個圖上所有點的最短距離,在平面內(nèi)有一個正方形,邊長為2,中心為O,在正方形外有一點SKIPIF1<0,當正方形繞著點O旋轉(zhuǎn)時,則點P到正方形的最短距離d的取值范圍為__________.
【答案】SKIPIF1<0【分析】先確定正方形的中心O與各邊的所有點的連線中的最大值與最小值,然后結(jié)合旋轉(zhuǎn)的條件即可求解.【解析】解:如圖1,設(shè)SKIPIF1<0的中點為E,連接OA,OE,則AE=OE=1,∠AEO=90°,SKIPIF1<0.∴點O與正方形SKIPIF1<0邊上的所有點的連線中,SKIPIF1<0最小,等于1,SKIPIF1<0最大,等于SKIPIF1<0.∵SKIPIF1<0,∴點P與正方形SKIPIF1<0邊上的所有點的連線中,如圖2所示,當點E落在SKIPIF1<0上時,最大值PE=PO-EO=2-1=1;如圖3所示,當點A落在SKIPIF1<0上時,最小值SKIPIF1<0.∴當正方形ABCD繞中心O旋轉(zhuǎn)時,點P到正方形的距離d的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0【點睛】本題考查了新定義、正方形的性質(zhì)、勾股定理等知識點,準確理解新定義的含義和熟知正方形的性質(zhì)是解題的關(guān)鍵.20.(2021·新疆·中考真題)如圖,已知正方形ABCD邊長為1,E為AB邊上一點,以點D為中心,將SKIPIF1<0按逆時針方向旋轉(zhuǎn)得SKIPIF1<0,連接EF,分別交BD,CD于點M,N.若SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0【分析】過點E作EP⊥BD于P,將∠EDM構(gòu)造在直角三角形DEP中,設(shè)法求出EP和DE的長,然后用三角函數(shù)的定義即可解決.【解析】解:∵四邊形ABCD是正方形,∴AB∥DC,∠A=∠BCD=∠ADC=90°,AB=BC=CD=DA=1,SKIPIF1<0.∵△DAE繞點D逆時針旋轉(zhuǎn)得到△DCF,∴CF=AE,DF=DE,∠EDF=∠ADC=90°.設(shè)AE=CF=2x,DN=5x,則BE=1-2x,CN=1-5x,BF=1+2x.∵AB∥DC,∴SKIPIF1<0.
∴SKIPIF1<0.∴SKIPIF1<0.整理得,SKIPIF1<0.解得,SKIPIF1<0,SKIPIF1<0(不合題意,舍去).∴SKIPIF1<0.∴SKIPIF1<0.過點E作EP⊥BD于點P,如圖所示,
設(shè)DP=y,則SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0.解得,SKIPIF1<0.∴SKIPIF1<0.∴在Rt△DEP中,SKIPIF1<0.即SKIPIF1<0.
故答案為:SKIPIF1<0【點睛】本題考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理、銳角三角函數(shù)、方程的數(shù)學思想等知識點,熟知各類圖形的性質(zhì)與判定是解題的基礎(chǔ),構(gòu)造直角三角形,利用銳角三角函數(shù)的定義是解題的關(guān)鍵.21.(2021·山東青島·中考真題)已知正方形SKIPIF1<0的邊長為3,SKIPIF1<0為SKIPIF1<0上一點,連接SKIPIF1<0并延長,交SKIPIF1<0的延長線于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0為SKIPIF1<0上一動點,分別連接SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0【分析】由正方形的性質(zhì),可得A點與C點關(guān)于BD對稱,則有MN+CM=MN+AM≥AN,所以當A、M、N三點共線時,MN+CM的值最小為AN,先證明△DCG~△FCE,再由SKIPIF1<0,可得SKIPIF1<0,分別求出DE=1,CE=2,CF=6,即可求出AN.【解析】解:∵四邊形ABCD是正方形,∴A點與C點關(guān)于BD對稱,∴CM=AM,∴MN+CM=MN+AM≥AN,∴當A、M、N三點共線時,MN+CM的值最小,∵AD∥CF,∴∠DAE=∠F,∵∠DAE+∠DEH=90°,∵DG⊥AF,∴∠CDG+∠DEH=90°,∴∠DAE=∠CDG,∴∠CDG=∠F,∴△DCG~△FCE,∵SKIPIF1<0,∴SKIPIF1<0,∵正方形邊長為3,∴CF=6,∵AD∥CF,SKIPIF1<0,∴DE=1,CE=2,在Rt△CEF中,EF2=CE2+CF2,∴SKIPIF1<0,∵N是EF的中點,SKIPIF1<0,在Rt△ADE中,EA2=AD2+DE2,∴SKIPIF1<0,∴SKIPIF1<0,∴MN+MC的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查軸對稱求最短距離,熟練掌握正方形的性質(zhì),用軸對稱求最短距離的方法,靈活應(yīng)用三角形相似、勾股定理是解題的關(guān)鍵.22.(2021·青海西寧·中考真題)如圖,SKIPIF1<0是等邊三角形,SKIPIF1<0,N是SKIPIF1<0的中點,SKIPIF1<0是SKIPIF1<0邊上的中線,M是SKIPIF1<0上的一個動點,連接SKIPIF1<0,則SKIPIF1<0的最小值是________.【答案】SKIPIF1<0【分析】根據(jù)題意可知要求BM+MN的最小值,需考慮通過作輔助線轉(zhuǎn)化BM,MN的值,從而找出其最小值,進而根據(jù)勾股定理求出CN,即可求出答案.【解析】解:連接CN,與AD交于點M,連接BM.(根據(jù)兩點之間線段最短;點到直線垂直距離最短),SKIPIF1<0是SKIPIF1<0邊上的中線即C和B關(guān)于AD對稱,則BM+MN=CN,則CN就是BM+MN的最小值.∵SKIPIF1<0是等邊三角形,SKIPIF1<0,N是SKIPIF1<0的中點,
∴AC=AB=6,AN=SKIPIF1<0AB=3,SKIPIF1<0,∴SKIPIF1<0.即BM+MN的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查的是軸對稱-最短路線問題,涉及到等邊三角形的性質(zhì),勾股定理,軸對稱的性質(zhì),等腰三角形的性質(zhì)等知識點的綜合運用.23.(2021·遼寧鞍山·中考真題)如圖,SKIPIF1<0,定長為a的線段端點A,B分別在射線OP,OQ上運動(點A,B不與點O重合),C為AB的中點,作SKIPIF1<0關(guān)于直線OC對稱的SKIPIF1<0,SKIPIF1<0交AB于點D,當SKIPIF1<0是等腰三角形時,SKIPIF1<0的度數(shù)為_____________.【答案】SKIPIF1<0或SKIPIF1<0【分析】結(jié)合折疊及直角三角形斜邊中線等于斜邊一半的性質(zhì)可得SKIPIF1<0,設(shè)SKIPIF1<0,然后利用三角形外角和等腰三角形的性質(zhì)表示出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,從而利用分類討論思想解題.【解析】解:SKIPIF1<0,C為AB的中點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又由折疊性質(zhì)可得SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;②當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,方程無解,SKIPIF1<0此情況不存在;③當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0;綜上,SKIPIF1<0的度數(shù)為SKIPIF1<0或SKIPIF1<0,故答案為:SKIPIF1<0或SKIPIF1<0.【點睛】此題考查折疊及直角三角形斜邊中線等于斜邊一半的性質(zhì),三角形外角和等腰三角形的性質(zhì),難度一般.24.(2021·遼寧錦州·中考真題)如圖,∠MON=30°,點A1在射線OM上,過點A1作A1B1⊥OM交射線ON于點B1,將△A1OB1沿A1B1折疊得到△A1A2B1,點A2落在射線OM上;過點A2作A2B2⊥OM交射線ON于點B2,將△A2OB2沿A2B2折疊得到△A2A3B2,點A2落在射線OM上;…按此作法進行下去,在∠MON內(nèi)部作射線OH,分別與A1B1,A2B2,A3B3,…,AnBn交于點P1,P2,P3,…Pn,又分別與A2B1,A3B2,A4B3,…,An+1Bn,交于點Q1,Q2,Q3,…,Qn.若點P1為線段A1B1的中點,OA1=SKIPIF1<0,則四邊形AnPnQnAn+1的面積為___________________(用含有n的式子表示).【答案】SKIPIF1<0【分析】先證明△OA1P1∽△OA2P2,△OP1B1∽△OP2B2,又點P1為線段A1B1的中點,從而可得P2為線段A2B2的中點,同理可證P3、P4、Pn依次為線段A3B3、A4B4、?AnBn的中點.結(jié)合相似三角形的性質(zhì)可得△P1B1Q1的P1B1上的高與△P2A2O1的A2P2上的高之比為1∶2,所以△P1B1Q1的P1B1上的高為SKIPIF1<0,同理可得△P2B2Q2的P2B2上的高為SKIPIF1<0?,從而SKIPIF1<0=SKIPIF1<0﹣SKIPIF1<0,以此類推來求SKIPIF1<0,從而找到SKIPIF1<0的面積規(guī)律.【解析】解:由折疊可知,OA1=A1A2=SKIPIF1<0,由題意得:A1B1//A2B2,∴△OA1P1∽△OA2P2,△OP1B1∽△OP2B2,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0SKIPIF1<0,又∵點P1為線段A1B1的中點,∴A1P1=P1B1,∴A2P2=P2B2,則點P2為線段A2B2的中點,同理可證,P3、P4、?Pn依次為線段A3B3、A4B4、?AnBn的中點.∵A1B1//A2B2,∴△P1B1Q1∽△P2A2O1,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,則△P1B1Q1的P1B1上的高與△P2A2O1的A2P2上的高之比為1∶2,∴△P1B1Q1的P1B1上的高為SKIPIF1<0,同理可得△P2B2Q2的P2B2上的高為SKIPIF1<0,SKIPIF1<0,由折疊可知A2A3=SKIPIF1<0,A3A4=SKIPIF1<0,∵∠MON=30°,∴A1B1=tan30°×OA1=1,∴A2B2=2,A3B3=4,SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0﹣SKIPIF1<0=SKIPIF1<0﹣SKIPIF1<0=SKIPIF1<0,同理,SKIPIF1<0=SKIPIF1<0﹣SKIPIF1<0=SKIPIF1<0﹣SKIPIF1<0=SKIPIF1<0,SKIPIF1<0SKIPIF1<0=SKIPIF1<0﹣SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.故答案為:SKIPIF1<0.【點睛】本題考查了規(guī)律型:圖形的變化類,相似三角形的判定與性質(zhì),折疊的性質(zhì),銳角三角函數(shù)等知識,解決本題的關(guān)鍵在根據(jù)圖形的變化找到規(guī)律.三、解答題25.(2021·福建·中考真題)如圖,在SKIPIF1<0中,SKIPIF1<0.線段SKIPIF1<0是由線段SKIPIF1<0平移得到的,點F在邊SKIPIF1<0上,SKIPIF1<0是以SKIPIF1<0為斜邊的等腰直角三角形,且點D恰好在SKIPIF1<0的延長線上.(1)求證:SKIPIF1<0;(2)求證:SKIPIF1<0.【答案】(1)見解析;(2)見解析【分析】(1)通過兩角和等于SKIPIF1<0,然后通過等量代換即可證明;(2)通過平移的性質(zhì),證明三角形全等,得到對應(yīng)邊相等,通過等量代換即可證明.【解析】證明:(1)在等腰直角三角形SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.(2)連接SKIPIF1<0.由平移的性質(zhì)得SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0.由(1)得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點睛】本小題考查平移的性質(zhì)、直角三角形和等腰三角形的性質(zhì)、全等三角形的判定和性質(zhì),解題的關(guān)鍵是:正確添加輔助線、熟練掌握平移的性質(zhì)和全等三角形的判定與性質(zhì).26.(2021·湖北襄陽·中考真題)在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是邊SKIPIF1<0上一點,將SKIPIF1<0沿SKIPIF1<0折疊得到SKIPIF1<0,連接SKIPIF1<0.(1)特例發(fā)現(xiàn):如圖1,當SKIPIF1<0,SKIPIF1<0落在直線SKIPIF1<0上時,①求證:SKIPIF1<0;②填空:SKIPIF1<0的值為______;(2)類比探究:如圖2,當SKIPIF1<0,SKIPIF1<0與邊SKIPIF1<0相交時,在SKIPIF1<0上取一點SKIPIF1<0,使SKIPIF1<0,SKIPIF1<0交SKIPIF1<0于點SKIPIF1<0.探究SKIPIF1<0的值(用含SKIPIF1<0的式子表示),并寫出探究過程;(3)拓展運用:在(2)的條件下,當SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點時,若SKIPIF1<0,求SKIPIF1<0的長.
【答案】(1)①見解析;②1;(2)SKIPIF1<0,見解析;(3)SKIPIF1<0【分析】(1)①根據(jù)折疊性質(zhì)證明即可;②當SKIPIF1<0,證明SKIPIF1<0SKIPIF1<0,即可得出SKIPIF1<0的值;(2)延長SKIPIF1<0交SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025農(nóng)村回遷房買賣合同(含稅費處理)
- 2025年度養(yǎng)豬場養(yǎng)殖環(huán)境優(yōu)化與改造合同3篇
- 二零二五年度借調(diào)人員工作培訓與職業(yè)成長協(xié)議3篇
- 二零二五年度教育培訓機構(gòu)教師聘用與教學質(zhì)量監(jiān)控合同2篇
- 二零二五年度子女對父母贍養(yǎng)與老年旅游服務(wù)合同3篇
- 二零二五年度國際能源資源勘探開發(fā)合同3篇
- 2025年度養(yǎng)豬場產(chǎn)業(yè)鏈上下游供應(yīng)鏈合作合同3篇
- 二零二五年度企業(yè)勞動合同解除與員工離職經(jīng)濟補償及離職證明協(xié)議3篇
- 2025年度口腔醫(yī)院與醫(yī)療器械制造商戰(zhàn)略合作合同3篇
- 2025年度美國大學本科預(yù)科班入學合同3篇
- 醫(yī)療廢物轉(zhuǎn)移實施方案
- 工程師個人年終總結(jié)
- GB 17353-2024摩托車和輕便摩托車防盜裝置
- 學校膳食管理委員會工作制度和職責
- 房租收條格式(3篇)
- 期末試卷(試題)2024-2025學年培智生活語文二年級上冊
- 2024伊利在線測評題
- 紅色簡約中國英雄人物李大釗課件
- 小學師德考評細則
- 軟件定義網(wǎng)絡(luò)(SDN)實戰(zhàn)教程課件
- 上海市住院醫(yī)師規(guī)范化培訓公共科目考試題庫-重點傳染病防治知識
評論
0/150
提交評論