雙重差分模型教學(xué)課件differenceindifferencesmodels課件_第1頁
雙重差分模型教學(xué)課件differenceindifferencesmodels課件_第2頁
雙重差分模型教學(xué)課件differenceindifferencesmodels課件_第3頁
雙重差分模型教學(xué)課件differenceindifferencesmodels課件_第4頁
雙重差分模型教學(xué)課件differenceindifferencesmodels課件_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

DifferenceinDifferenceModelsBillEvansSpring20191DifferenceinDifferenceModelDifferenceindifferencemodelsMaybethemostpopularidentificationstrategyinappliedworktodayAttemptstomimicrandomassignmentwithtreatmentand“comparison”sampleApplicationoftwo-wayfixedeffectsmodel2DifferenceindifferencemodelProblemsetupCross-sectionalandtimeseriesdataOnegroupis‘treated’withinterventionHavepre-postdataforgroupreceivinginterventionCanexaminetime-serieschangesbut,unsurehowmuchofthechangeisduetosecularchanges3ProblemsetupCross-sectionaltimeYt1t2YaYbYt1Yt2Trueeffect=Yt2-Yt1Estimatedeffect=Yb-Yati4timeYt1t2YaYbYt1Yt2TrueeffectInterventionoccursattimeperiodt1TrueeffectoflawYa–YbOnlyhavedataatt1andt2Ifusingtimeseries,estimateYt1–Yt2Solution?55DifferenceindifferencemodelsBasictwo-wayfixedeffectsmodelCrosssectionandtimefixedeffectsUsetimeseriesofuntreatedgrouptoestablishwhatwouldhaveoccurredintheabsenceoftheinterventionKeyconcept:cancontrolforthefactthattheinterventionismorelikelyinsometypesofstates6DifferenceindifferencemodelThreedifferentpresentationsTabularGraphicalRegressionequation7ThreedifferentpresentationsTDifferenceinDifferenceBeforeChangeAfterChangeDifferenceGroup1(Treat)Yt1Yt2ΔYt=Yt2-Yt1Group2(Control)Yc1Yc2ΔYc=Yc2-Yc1DifferenceΔΔYΔYt–ΔYc8DifferenceinDifferenceBeforetimeYt1t2Yt1Yt2treatmentcontrolYc1Yc2Treatmenteffect=(Yt2-Yt1)–(Yc2-Yc1)9timeYt1t2Yt1Yt2treatmentcontroKeyAssumptionControlgroupidentifiesthetimepathofoutcomesthatwouldhavehappenedintheabsenceofthetreatmentInthisexample,YfallsbyYc2-Yc1evenwithouttheinterventionNotethatunderlying‘levels’ofoutcomesarenotimportant(returntothisintheregressionequation)10KeyAssumptionControlgroupidtimeYt1t2Yt1Yt2treatmentcontrolYc1Yc2Treatmenteffect=(Yt2-Yt1)–(Yc2-Yc1)TreatmentEffect11timeYt1t2Yt1Yt2treatmentcontroIncontrast,whatiskeyisthatthetimetrendsintheabsenceoftheinterventionarethesameinbothgroupsIftheinterventionoccursinanareawithadifferenttrend,willunder/overstatethetreatmenteffectInthisexample,supposeinterventionoccursinareawithfasterfallingY12Incontrast,whatiskeyisthtimeYt1t2Yt1Yt2treatmentcontrolYc1Yc2TruetreatmenteffectEstimatedtreatmentTrueTreatmentEffect13timeYt1t2Yt1Yt2treatmentcontroBasicEconometricModelDatavariesbystate(i)time(t)OutcomeisYitOnlytwoperiodsInterventionwilloccurinagroupofobservations(e.g.states,firms,etc.)14BasicEconometricModelDatavaThreekeyvariablesTit=1ifobsibelongsinthestatethatwilleventuallybetreatedAit=1intheperiodswhentreatmentoccursTitAit--interactionterm,treatmentstatesaftertheinterventionYit=β0+β1Tit+β2Ait+β3TitAit+εit15Threekeyvariables15Yit=β0+β1Tit+β2Ait+β3TitAit+εitBeforeChangeAfterChangeDifferenceGroup1(Treat)β0+β1β0+β1+β2+β3ΔYt

=β2+β3Group2(Control)β0β0+β2ΔYc=β2DifferenceΔΔY=β316Yit=β0+β1Tit+β2Ait+β3TMoregeneralmodelDatavariesbystate(i)time(t)OutcomeisYitManyperiodsInterventionwilloccurinagroupofstatesbutatavarietyoftimes17MoregeneralmodelDatavariesuiisastateeffectvtisacompletesetofyear(time)effectsAnalysisofcovariancemodelYit=β0+β3TitAit+ui+λt+εit18uiisastateeffect18WhatisniceaboutthemodelSupposeinterventionsarenotrandombutsystematicOccurinstateswithhigherorloweraverageYOccurintimeperiodswithdifferentY’sThisiscapturedbytheinclusionofthestate/timeeffects–allowscovariancebetweenuiandTitAitλtandTitAit19WhatisniceaboutthemodelSuGroupeffectsCapturedifferencesacrossgroupsthatareconstantovertimeYeareffectsCapturedifferencesovertimethatarecommontoallgroups20Groupeffects20Meyeretal.Workers’compensationStateruninsuranceprogramCompensateworkersformedicalexpensesandlostworkduetoonthejobaccidentPremiumsPaidbyfirmsFunctionofpreviousclaimsandwagespaidBenefits--%ofincomew/cap21Meyeretal.Workers’compensatTypicalbenefitsscheduleMin(pY,C)P=percentreplacementY=earningsC=cape.g.,65%ofearningsupto$400/month22Typicalbenefitsschedule22Concern:Moralhazard.BenefitswilldiscouragereturntoworkEmpiricalquestion:duration/benefitsgradientPreviousestimatesRegressduration(y)onreplacedwages(x)Problem:givenprogressivenatureofbenefits,replacedwagesrevealalotabouttheworkersReplacementrateshigherinhigherwagestates23Concern:23Yi=Xiβ+αRi+εiY(duration)R(replacementrate)Expectα>0ExpectCov(Ri,εi)HigherwageworkershavelowerRandhigherduration(understate)HigherwagestateshavelongerdurationandlongerR(overstate)24Yi=Xiβ+αRi+εi24SolutionQuasiexperimentinKYandMIIncreasedtheearningscapIncreasedbenefitforhigh-wageworkers(Treatment)Didnothingtothosealreadybeloworiginalcap(comparison)Comparechangeindurationofspellbeforeandafterchangeforthesetwogroups25SolutionQuasiexperimentinKY262627

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論