版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
CHAPTER4
INTERNALFORCESMechanicsofMaterialsCHAPTER4MechanicsofMater1第四章彎曲內(nèi)力材料力學(xué)第四章彎曲內(nèi)力材料力學(xué)2§4–1Conceptsofplanarbendingandcalculationsketchofthebeam§4–2Theshearingforceandbendingmomentofthebeam§4–3Theshearing-forceandbending-momentequations·theshearing-forceandbending-momentdiagrams§4–4Relationsamongtheshearingforce、thebendingmomentandthedensityofthedistributedloadandtheirapplications§4–5Plotthebending-momentdiagrambythetheoremofsuperpositiom§4–6Theinternal-forcediagramsoftheplanarrigidtheoremframesandcurvedrodsExerciselessonsabouttheinternalforceofbendingCHAPTER4INTERNALFORCESINBENDING
§4–1Conceptsofplanarbend3§4–1平面彎曲的概念及梁的計(jì)算簡圖§4–2梁的剪力和彎矩§4–3剪力方程和彎矩方程·剪力圖和彎矩圖§4–4剪力、彎矩與分布荷載集度間的關(guān)系及應(yīng)用§4–5按疊加原理作彎矩圖§4–6平面剛架和曲桿的內(nèi)力圖彎曲內(nèi)力習(xí)題課第四章彎曲內(nèi)力§4–1平面彎曲的概念及梁的計(jì)算簡圖第四章4
§4–1
CONCEPTSOFPLANARBENDINGANDCALCULATIONSKETCHOFTHEBEAM1、CONCEPTSOFBENDING1).BENDING:Theactionoftheexternalforceorexternalthecouplevectorperpendiculartotheaxisoftherodmakestheaxisoftherodchangeintocurvefromoriginalstraightlines,thisdeformationiscalledbending.2).BEAM:Thememberofwhichthedeformationismainlybendingisgenerallycalledbeam.INTERNALFORCESINBENDING§4–1CONCEPTSOFPLANARBEN5彎曲內(nèi)力§4–1平面彎曲的概念及梁的計(jì)算簡圖一、彎曲的概念1.彎曲:桿受垂直于軸線的外力或外力偶矩矢的作用時(shí),軸線變成了曲線,這種變形稱為彎曲。2.梁:以彎曲變形為主的構(gòu)件通常稱為梁。彎曲內(nèi)力§4–1平面彎曲的概念及梁的計(jì)算簡圖一、彎曲63).PracticalexamplesinengineeringaboutbendingINTERNALFORCESINBENDING3).Practicalexamplesinengin73.工程實(shí)例彎曲內(nèi)力3.工程實(shí)例彎曲內(nèi)力8INTERNALFORCESINBENDINGINTERNALFORCESINBENDING9彎曲內(nèi)力彎曲內(nèi)力104).Planarbending:Afterdeformationthecurvedaxisofthebeamisstillinthesameplanewiththeexternalforces.
Symmetricbending(asshowninthefollowingfigure)—a specialexampleoftheplanarbending.TheplaneofsymmetryMP1P2qINTERNALFORCESINBENDING4).Planarbending:Afterdeform11彎曲內(nèi)力4.平面彎曲:桿發(fā)生彎曲變形后,軸線仍然和外力在同一平面內(nèi)。對(duì)稱彎曲(如下圖)——平面彎曲的特例。縱向?qū)ΨQ面MP1P2q彎曲內(nèi)力4.平面彎曲:桿發(fā)生彎曲變形后,軸線仍然和外力在同12Unsymmetricalbending—ifabeamdoesnotpossessanyplaneofsymmetry,ortheexternalforcesdonotactinaplaneofsymmetryofthebeamwithsymmetricplanes,thiskindofbendingiscalledunsymmetricalbending.Inlaterchapterswewillmainlydiscussthebendingstressesanddeformationsofthebeamundersymmetricbending.INTERNALFORCESINBENDINGUnsymmetricalbending—ifabe13彎曲內(nèi)力非對(duì)稱彎曲——若梁不具有縱對(duì)稱面,或者,梁雖具有縱對(duì)稱面但外力并不作用在對(duì)稱面內(nèi),這種彎曲則統(tǒng)稱為非對(duì)稱彎曲。下面幾章中,將以對(duì)稱彎曲為主,討論梁的應(yīng)力和變形計(jì)算。彎曲內(nèi)力非對(duì)稱彎曲——若梁不具有縱對(duì)稱面,或者,梁雖具有縱142、Calculationsketchofthebeam
Ingeneralsupportsandexternalforcesofthebeamareverycomplex.Weshoulddosomenecessarysimplificationforthemforourconvenientcalculationandobtainthecalculationsketch.1).Simplificationofthebeams
Ingeneralcasewetaketheplaceofthebeambyitsaxis.2).Simplificationoftheloads
Theloads(includingthereaction)actingonthebeammaybereducedintothreetypes:concentratedforce、concentratedforcecoupleanddistributedforce.3).SimplificationofthesupportsINTERNALFORCESINBENDING2、Calculationsketchofthebe15彎曲內(nèi)力二、梁的計(jì)算簡圖梁的支承條件與載荷情況一般都比較復(fù)雜,為了便于分析計(jì)算,應(yīng)進(jìn)行必要的簡化,抽象出計(jì)算簡圖。1.構(gòu)件本身的簡化通常取梁的軸線來代替梁。2.載荷簡化作用于梁上的載荷(包括支座反力)可簡化為三種類型:集中力、集中力偶和分布載荷。3.支座簡化彎曲內(nèi)力二、梁的計(jì)算簡圖梁的支承條件與載荷情16①Fixedhingedsupport2constraints,1degreeoffreedom.Suchasthefixedhingedsupportunderbridges,thrustballbearingetc.②Movablehingedsupport1constraint,2degreeoffreedom.Suchasthemovablehingedsupportunderthebridge,ballbearingetc.INTERNALFORCESINBENDING①Fixedhingedsupport②Movable17彎曲內(nèi)力①固定鉸支座2個(gè)約束,1個(gè)自由度。如:橋梁下的固定支座,止推滾珠軸承等。②可動(dòng)鉸支座1個(gè)約束,2個(gè)自由度。如:橋梁下的輥軸支座,滾珠軸承等。彎曲內(nèi)力①固定鉸支座②可動(dòng)鉸支座18③Rigidlyfixedend
3constraints,0degreeoffreedom.Suchasthesupportofdivingboardattheswimmingpool,supportofthelowerendofawoodenpole.XAYAMA4)Threebasistypesofbeams①Simplebeam(orsimplysupportedbeam)M—Concentratedforcecoupleq(x)—Distributedforce②CantileverbeamINTERNALFORCESINBENDINGA③RigidlyfixedendXAYAMA4)Th19彎曲內(nèi)力③固定端3個(gè)約束,0個(gè)自由度。如:游泳池的跳水板支座,木樁下端的支座等。XAYAMA4.梁的三種基本形式①簡支梁M—集中力偶q(x)—分布力②懸臂梁彎曲內(nèi)力③固定端XAYAMA4.梁的三種基本形式①簡支20③Overhangingbeam—ConcentratedforcePq—Uniformlydistributedforce5).StaticallydeterminateandstaticallyindeterminatebeamsStaticallydeterminatebeams:Reactionsofthebeamcanbedeterminedonlybystaticequilibriumequations,suchastheabovethreekindsofbasicbeams.Staticallyindeterminatebeams:Reactionsofthebeamcannotbedeterminedoronlypartofreactionscanbedeterminedbystaticequilibriumequations.INTERNALFORCESINBENDING③Overhangingbeam—Concentrated21彎曲內(nèi)力③外伸梁—集中力Pq—均布力5.靜定梁與超靜定梁靜定梁:由靜力學(xué)方程可求出支反力,如上述三種基本形式的靜定梁。超靜定梁:由靜力學(xué)方程不可求出支反力或不能求出全部支反力。彎曲內(nèi)力③外伸梁—集中力Pq—均布力5.靜定梁與超靜定22Example1Astocktankisshowninthefigure.Itslengthis
L=5m,itsinsidediameterisD=1m,thicknessofitswallist=10mm.Densityofsteelis7.8g/cm3.Densityoftheliquidis1g/cm3.Heightoftheliquidis0.8m.Lengthofoverhangingendis1m.Trytodeterminethecalculationsketchofthestocktank.Solution:q—UniformlyDistributedforceINTERNALFORCESINBENDINGExample1Astocktanki23彎曲內(nèi)力[例1]貯液罐如圖示,罐長L=5m,內(nèi)徑D=1m,壁厚t=10mm,鋼的密度為:7.8g/cm3,液體的密度為:1g/cm3,液面高
0.8m,外伸端長1m,試求貯液罐的計(jì)算簡圖。解:q—均布力彎曲內(nèi)力[例1]貯液罐如圖示,罐長L=5m,內(nèi)徑D=1m,24q—UniformlyDistributedforceINTERNALFORCESINBENDINGq—UniformlyINTERNALFORCESIN25彎曲內(nèi)力q—均布力彎曲內(nèi)力q—均布力26§4–2THESHEARINGFORCEANDBENDINGMOMENTOFTHEBEAM1、Internalforceinbending:Example
KnowingconditionsareP,a,l,asshowninthefigure.DeterminetheinternalforcesonthesectionatthedistancextotheendA.PaPlYAXARBAABBSolution:①Determine externalforcesINTERNALFORCESINBENDING§4–2THESHEARINGFORCEAN27§4–2梁的剪力和彎矩一、彎曲內(nèi)力:彎曲內(nèi)力[舉例]已知:如圖,P,a,l。
求:距A端x處截面上內(nèi)力。PaPlYAXARBAABB解:①求外力§4–2梁的剪力和彎矩一、彎曲內(nèi)力:彎曲內(nèi)力[舉28ABPYAXARBmmx②Determineinternalforces— methodofsectionAYAQMRBPMQInternalforcesofthebeaminbendingShearingforceBendingmoment1).Bendingmoment:M
Momentoftheinternalforcecouplewiththeactingplaneinthecross-sectionperpendiculartothesectionwhenthebeamisbending.CCINTERNALFORCESINBENDINGABPYAXARBmmx②Determineinterna29ABPYAXARBmmx彎曲內(nèi)力②求內(nèi)力——截面法AYAQMRBPMQ∴彎曲構(gòu)件內(nèi)力剪力彎矩1.彎矩:M
構(gòu)件受彎時(shí),橫截面上其作用面垂直于截面的內(nèi)力偶矩。CCABPYAXARBmmx彎曲內(nèi)力②求內(nèi)力——截面法AYAQM302).Shearingforce:Q
Internalforcewhichtheactinglineinthecross-sectionparalleltothesection,whenthebeamisbending.3).Signconventionsfortheinternalforces:①Shearingforce
Q:
Itispositivewhenitresultsinaclockwiserotationwithrespecttotheobjectunderconsideration,otherwiseitisnegative.②BendingmomentM:Itispositivewhenittendstobendtheportionconcaveupwards,otherwiseitisnegative.Q(+)Q(–)Q(–)Q(+)M(+)M(+)M(–)M(–)INTERNALFORCESINBENDING2).Shearingforce:Q3).Signco31彎曲內(nèi)力2.剪力:Q
構(gòu)件受彎時(shí),橫截面上其作用線平行于截面的內(nèi)力。3.內(nèi)力的正負(fù)規(guī)定:①剪力Q:繞研究對(duì)象順時(shí)針轉(zhuǎn)為正剪力;反之為負(fù)。②彎矩M:使梁變成凹形的為正彎矩;使梁變成凸形的為負(fù)彎矩。Q(+)Q(–)Q(–)Q(+)M(+)M(+)M(–)M(–)彎曲內(nèi)力2.剪力:Q3.內(nèi)力的正負(fù)規(guī)定:①剪力Q:繞研32Example2:Determinetheinternalforcesactingonsections1—1and2—2sectionasshowninfig.(a).Solution:Determineinternalforces bythemethodofsection.
Freebodydiagramoftheleftportionofsection
1—1isshowninfig.(b).Fig.(a)2、ExamplesqqLab1122qLQ1AM1Fig.(b)x1INTERNALFORCESINBENDINGExample2:Determinetheintern33[例2]:求圖(a)所示梁1--1、2--2截面處的內(nèi)力。xy解:截面法求內(nèi)力。
1--1截面處截取的分離體
如圖(b)示。圖(a)二、例題qqLab1122qLQ1AM1圖(b)x1彎曲內(nèi)力[例2]:求圖(a)所示梁1--1、2--2截面處的內(nèi)力。x34Freebodydiagramoftheleftportionof
section2—2isshowninfig.(b).xy圖(a)qqLab1122qLQ2BM2x2圖(c)INTERNALFORCESINBENDINGFreebodydiagramoftheleft352--2截面處截取的分離體如圖(c)xy圖(a)qqLab1122qLQ2BM2x2彎曲內(nèi)力圖(c)2--2截面處截取的分離體如圖(c)xy圖(a)qqLab1361.Internal-forceequations:Expressionsthatshowtheinternalforcesasfunctionsofthepositionxofthesection..2.Theshearing-forceandbending-momentdiagrams:)(xQQ=Shearingforceequation)(xMM=Bendingmomentequation)(xQQ=Shearing-forcediagramsketchoftheshearing-forceequation)(xMM=BendingMomentdiagramsketchofthebending-momentequation§4–3THESHEARING-FORCEANDBENDING-MOMENTEQUATIONS THESHEARING-FORCEANDBENDING-MOMENTDIAGRAMSINTERNALFORCESINBENDING1.Internal-forceequations:E37彎曲內(nèi)力1.內(nèi)力方程:內(nèi)力與截面位置坐標(biāo)(x)間的函數(shù)關(guān)系式。2.剪力圖和彎矩圖:)(xQQ=剪力方程)(xMM=彎矩方程)(xQQ=剪力圖的圖線表示)(xMM=彎矩圖的圖線表示§4–3剪力方程和彎矩方程·剪力圖和彎矩圖彎曲內(nèi)力1.內(nèi)力方程:內(nèi)力與截面位置坐標(biāo)(x)間的函數(shù)關(guān)系38Example3Determinetheinternal-forceequationsandplotthediagramsofthebeamshowninthefollowingfigure.Solution:①Determinethe reactionsofthesupports②Writeouttheinternal- forceequationsP③Plottheinternal- forcediagrams
Q(x)M(x)xxP–PLYOLM(x)xQ(x)MOINTERNALFORCESINBENDING⊕○Example3Determinetheinter39彎曲內(nèi)力[例3]求下列各圖示梁的內(nèi)力方程并畫出內(nèi)力圖。解:①求支反力②寫出內(nèi)力方程PYOL③根據(jù)方程畫內(nèi)力圖M(x)xQ(x)Q(x)M(x)xxP–PLMO⊕○彎曲內(nèi)力[例3]求下列各圖示梁的內(nèi)力方程并畫出內(nèi)力圖。解:40Solution:①Writeoutthe internal-forceequations②Plottheinternal- forcediagramLqM(x)xQ(x)Q(x)x–qLINTERNALFORCESINBENDINGM(x)x⊕○Solution:①Writeoutthe inte41彎曲內(nèi)力解:①寫出內(nèi)力方程②根據(jù)方程畫內(nèi)力圖LqM(x)xQ(x)Q(x)xM(x)x–qL⊕○彎曲內(nèi)力解:①寫出內(nèi)力方程②根據(jù)方程畫內(nèi)力圖LqM(x)xQ42Solution:①Determinethe reactionsofthesupports②Writeouttheinternal- forceequationsq0RA③Plottheinternal- forcediagrams
RBLxQ(x)xM(x)INTERNALFORCESINBENDING⊕⊕○Solution:①Determinethe react43彎曲內(nèi)力解:①求支反力②內(nèi)力方程q0RA③根據(jù)方程畫內(nèi)力圖RBLxQ(x)xM(x)⊕⊕○彎曲內(nèi)力解:①求支反力②內(nèi)力方程q0RA③根據(jù)方程畫內(nèi)力圖R441、Relationsamongtheshearingforce、 thebendingmomentandthethe distributedloadByanalysisoftheequilibriumoftheinfinitesimallength
dx,wecanget§4–4
RELATIONSAMANGTHESHEARINGFORCE,THEBENDINGMOMENTANDTHEINDENSITYOFTHEDISTRIBUTEDLOADANDTHEIRAPPLICATIONS
dxxq(x)q(x)M(x)+dM(x)Q(x)+dQ(x)Q(x)M(x)dxAyINTERNALFORCESINBENDINGSlopeofthetangentiallineatapointintheshearing-forcediagramisequaltotheintensityofthedistributedloadatthesamepoint.1、Relationsamongtheshearing45彎曲內(nèi)力一、剪力、彎矩與分布荷載間的關(guān)系對(duì)dx
段進(jìn)行平衡分析,有:§4–4剪力、彎矩與分布荷載集度間的關(guān)系及應(yīng)用dxxq(x)q(x)M(x)+dM(x)Q(x)+dQ(x)Q(x)M(x)dxAy剪力圖上某點(diǎn)處的切線斜率等于該點(diǎn)處荷載集度的大小。彎曲內(nèi)力一、剪力、彎矩與分布荷載間的關(guān)系對(duì)dx段進(jìn)行平衡46q(x)M(x)+dM(x)Q(x)+dQ(x)Q(x)M(x)dxAySlopeofthetangentiallineatapointinthebending-momentdiagramisequaltothemagnitudeoftheshearingforceatthesamepoint.Relationbetweenthebendingmomentandtheindensityofthedistributedload:INTERNALFORCESINBENDINGq(x)M(x)+dM(x)Q(x)+dQ(x)Q(x)47彎曲內(nèi)力q(x)M(x)+dM(x)Q(x)+dQ(x)Q(x)M(x)dxAy彎矩圖上某點(diǎn)處的切線斜率等于該點(diǎn)處剪力的大小。彎矩與荷載集度的關(guān)系是:彎曲內(nèi)力q(x)M(x)+dM(x)Q(x)+dQ(x)482、Relationsbetweentheshearingforce、thebendingmomentandtheexternalloadExternalforceNoexternal-forcesegmentUniform-loadsegmentConcentratedforceConcentratedcoupleq=0q>0q<0CharacteristicsofQ-diagramCharacteristicsofM-diagramCPCmHorizontalstraightlinexQQ>0QQ<0xInclinedstraightlineIncreasingfunctionxQxQDecreasingfunctionxQCQ1Q2Q1–Q2=PSuddenchangefromthelefttorightxQCNochangeInclinedstraightlinexMIncreasingfunctionxMDecreasingfunctioncurvesxMTomb-likexMBasin-likeFlexfromthelefttotheright
SuddenchangefromthelefttotherightOppositetomxMFlexoppositetoPMxM1M2INTERNALFORCESINBENDING2、Relationsbetweenthesheari49二、剪力、彎矩與外力間的關(guān)系外力無外力段均布載荷段集中力集中力偶q=0q>0q<0Q圖特征M圖特征CPCm水平直線xQQ>0QQ<0x斜直線增函數(shù)xQxQ降函數(shù)xQCQ1Q2Q1–Q2=P自左向右突變xQC無變化斜直線xM增函數(shù)xM降函數(shù)曲線xM墳狀xM盆狀自左向右折角
自左向右突變與m反彎曲內(nèi)力xM折向與P反向MxM1M2二、剪力、彎矩與外力間的關(guān)系外力無外力段均布載荷段集中力集中50Simplemethodtoplotthediagram:Themethodtoplotthediagramsbyusingtherelationbetweentheinternalforcesandtheexternalforcesandvaluesoftheinternalforcesatsomespecialpoints.Example4
Plottheinternalforcediagramsofthebeamsshowninthefollowingfiguresbythesimplemethodtoplotthediagram.Solution:Specialpoints:aaqaqAPlotthediagrambyusingtherelationbetweentheinternalforcesandtheexternalforcesandtheinternalforcevaluesatsomespecialpointsofthebeam.Endpoint、partitionpoint(thepointatwhichexternalforceschanged)andstationarypoint
etc.INTERNALFORCESINBENDINGSimplemethodtoplotthediag51彎曲內(nèi)力簡易作圖法:利用內(nèi)力和外力的關(guān)系及特殊點(diǎn)的內(nèi)力值來作圖的方法。[例4]
用簡易作圖法畫圖示梁的內(nèi)力圖。解:利用內(nèi)力和外力的關(guān)系及特殊點(diǎn)的內(nèi)力值來作圖。特殊點(diǎn):端點(diǎn)、分區(qū)點(diǎn)(外力變化點(diǎn))和駐點(diǎn)等。aaqaqA彎曲內(nèi)力簡易作圖法:利用內(nèi)力和外力的關(guān)系及特殊點(diǎn)的內(nèi)力值來52aaqaqALeftend:Shapeofthecurveisdeterminedaccordingto
;;Andthelawofthepointactedbyconcentratedforce.Partitionpoint
A:StationarypointofM
:Rightend:Qxqa2–qa–xMINTERNALFORCESINBENDINGaaqaqALeftend:Shapeofthecu53彎曲內(nèi)力aaqaqA左端點(diǎn):線形:根據(jù);;及集中載荷點(diǎn)的規(guī)律確定。分區(qū)點(diǎn)A:M的駐點(diǎn):右端點(diǎn):Qxqa2–qa–xM彎曲內(nèi)力aaqaqA左端點(diǎn):線形:根據(jù);;及集中載荷點(diǎn)的規(guī)律54Example5
Plottheinternal-forcediagramsofthebeamsshowninthefollowingfiguresbythesimplemethodtoplotthediagram.Solution:DeterminereactionsLeftendA:
RightofpointB:LeftofpointC:StationarypointofM:RightofpointC:RightendD:qqa2qaRARDQxqa/2qa/2qa/2––+ABCDqa2/2xMqa2/2qa2/23qa2/8–+
LeftofpointB:INTERNALFORCESINBENDINGExample5Plottheinternal-fo55彎曲內(nèi)力[例5]用簡易作圖法畫下列各圖示梁的內(nèi)力圖。解:求支反力左端點(diǎn)A:B點(diǎn)左:B點(diǎn)右:C點(diǎn)左:M的駐點(diǎn):C點(diǎn)右:右端點(diǎn)D:qqa2qaRARDQxqa/2qa/2qa/2––+ABCDqa2/2xMqa2/2qa2/23qa2/8–+彎曲內(nèi)力[例5]用簡易作圖法畫下列各圖示梁的內(nèi)力圖。解:求56§4–5PLOTTHEDIAGRAMOFBENDINGMOMENTBYTHE THEOREMOFSUPERPOSITIOM1、Theoremofsuperposition:
Internalforcesinthestructureduetosimultaneousactionofmanyforcesareequaltoalgebraicsumoftheinternalforcesduetoseparateactionofeachforce.Applyingcondition:Relationbetweentheparameters(internalforces、stresses、displacements)andtheexternalforcesmustbelinear,thatistheysatisfyHooke’slaw.INTERNALFORCESINBENDING§4–5PLOTTHEDIAGRAMOFBEN57彎曲內(nèi)力§4–5按疊加原理作彎矩圖一、疊加原理:
多個(gè)載荷同時(shí)作用于結(jié)構(gòu)而引起的內(nèi)力等于每個(gè)載荷單獨(dú)作用于結(jié)構(gòu)而引起的內(nèi)力的代數(shù)和。適用條件:所求參數(shù)(內(nèi)力、應(yīng)力、位移)必然與荷載滿足線性關(guān)系。即在彈性限度內(nèi)滿足虎克定律。彎曲內(nèi)力§4–5按疊加原理作彎矩圖一、疊加原理:
582、Structuralmembersinmechanicsofmaterialisofsmalldeformationandlinearelasticity,andmustobeythisprinciple——methodofsuperpositionSteps:①Plotrespectivelythediagramofthebendingmomentofthebeamundertheseparateactionofeachexternalload;②Sumupthecorrespondinglongitudinalcoordinates(Attention:donotsimplypiecetogetherfigures.)INTERNALFORCESINBENDING2、Structuralmembersinmechan59彎曲內(nèi)力二、材料力學(xué)構(gòu)件小變形、線性范圍內(nèi)必遵守此原理——疊加方法步驟:①分別作出各項(xiàng)荷載單獨(dú)作用下梁的彎矩圖;②將其相應(yīng)的縱坐標(biāo)疊加即可(注意:不是圖形的簡單拼湊)。彎曲內(nèi)力二、材料力學(xué)構(gòu)件小變形、線性范圍內(nèi)必遵守此原理步驟:60Example6Plotthediagramofbendingmomentbytheprincipleofsuperposition.
(AB=2a,forcePisactingatthemiddlepointofthebeamAB.)PqqP=+AAABBBxM2xM1xM
+++=+INTERNALFORCESINBENDINGExample6Plotthediagramof61彎曲內(nèi)力[例6]按疊加原理作彎矩圖(AB=2a,力P作用在梁AB的中點(diǎn)處)。qqPP=+AAABBBxM2xM1xM
+++=+彎曲內(nèi)力[例6]按疊加原理作彎矩圖(AB=2a,力P作用在梁62
3、Applicationsofsymmetryandantisymmetry:
ForthesymmetricstructureundertheactionofsymmetricloadsthediagramofitsshearingstressQisantisymmetricandthediagramofthebendingmomentMissymmetric.ForthesymmetricstructureundertheactionofantisymmetricloadsthediagramofitsshearingstressQissymmetricandthediagramofthebendingmomentMisantisymmetric.
INTERNALFORCESINBENDING3、Applicationsofsymmetryan63彎曲內(nèi)力
三、對(duì)稱性與反對(duì)稱性的應(yīng)用:
對(duì)稱結(jié)構(gòu)在對(duì)稱載荷作用下,Q圖反對(duì)稱,M圖對(duì)稱;對(duì)稱結(jié)構(gòu)在反對(duì)稱載荷作用下,Q圖對(duì)稱,M圖反對(duì)稱。彎曲內(nèi)力三、對(duì)稱性與反對(duì)稱性的應(yīng)用:
對(duì)稱64Example7Plotinternal-forcediagramsofthebeamsshowninthe followingfigure.PPLPPLLLLLLL0.5P0.5P0.5P0.5PP0QxQ1xQ2x–0.5P0.5P0.5P–+–PINTERNALFORCESINBENDINGExample7Plotinternal-for65彎曲內(nèi)力[例7]作下列圖示梁的內(nèi)力圖。PPLPPLLLLLLL0.5P0.5P0.5P0.5PP0QxQ1xQ2x–0.5P0.5P0.5P–+–P彎曲內(nèi)力[例7]作下列圖示梁的內(nèi)力圖。PPLPPLLLLL66PPLPPLLLLLLL0.5P0.5P0.5P0.5PP0MxM1xM2x0.5PLPL0.5PL–++0.5PL+INTERNALFORCESINBENDINGPPLPPLLLLLLL0.5P0.5P0.5P0.5PP067彎曲內(nèi)力PPLPPLLLLLLL0.5P0.5P0.5P0.5PP0MxM1xM2x0.5PLPL0.5PL–++0.5PL+彎曲內(nèi)力PPLPPLLLLLLL0.5P0.5P0.5P0.68Example8Correctthemistakesinthefollowinginternal-forcediagrams.a2aaqqa2ABQxxM––++qa/4qa/43qa/47qa/4qa2/449qa2/323qa2/25qa2/4INTERNALFORCESINBENDINGRARBExample8Correctthemistak69彎曲內(nèi)力[例8]改內(nèi)力圖之錯(cuò)。a2aaqqa2ABQxxM––++qa/4qa/43qa/47qa/4qa2/449qa2/323qa2/25qa2/4彎曲內(nèi)力[例8]改內(nèi)力圖之錯(cuò)。a2aaqqa2ABQxxM70Example9KnowingQ-diagram,determineexternalloadsandM-diagram(Thereforenoconcentratedforcecouplesactedonthebeam).M(kN·m)Q(kN)x1m1m2m2315kN1kNq=2kN/m+–+x+111.25–INTERNALFORCESINBENDINGExample9KnowingQ-diagram,71彎曲內(nèi)力[例9]已知Q圖,求外載及M圖(梁上無集中力偶)。Q(kN)x1m1m2m2315kN1kNq=2kN/m+–+M(kN·m)x+111.25–彎曲內(nèi)力[例9]已知Q圖,求外載及M圖(梁上無集中力偶)。72§4–6
THEINTERNAL-FORCEDIAGRAMSOFTHEPLANARRIGIDFRAMESANDCURVEDRODS1、Planarrigidframe1).Planarrigidframe:Structuremadefromrodsofdifferentdirectionthataremutuallyconnectedinrigidityattheirendsinthesameplane.Characteristics:ThereareinternalforcesQ,MandNineachrod.2).Conventionstoplotdiagramofinternalforces:Bending-momentdiagram:Plotitatthesidewherefibersareelongatedandnotmarkthesignofpositiveornegative.
Shearing-forceandaxial-forcediagrams:Maybeplottedatanysideoftheframe(Incommonthediagramwithpositivevalueisplottedoutsidetheframe),butmustmarkthesignsofpositiveandnegative.INTERNALFORCESINBENDING§4–6THEINTERNAL-FORCEDIA73彎曲內(nèi)力§4–6平面剛架和曲桿的內(nèi)力圖一、平面剛架1.平面剛架:同一平面內(nèi),不同取向的桿件,通過桿端相互剛性連接而組成的結(jié)構(gòu)。特點(diǎn):剛架各桿的內(nèi)力有:Q、M、N。2.內(nèi)力圖規(guī)定:彎矩圖:畫在各桿的受拉一側(cè),不注明正、負(fù)號(hào)。
剪力圖及軸力圖:可畫在剛架軸線的任一側(cè)(通常正值畫在剛架的外側(cè)),但須注明正、負(fù)號(hào)。彎曲內(nèi)力§4–6平面剛架和曲桿的內(nèi)力圖一、平面剛架174Example10Trytoplottheinternal-forcediagramsoftherigidframeshowninthefigure.P1P2alABC–N-diagramQ-diagramP2+P1+P1M-diagramP1aP1aP1a+P2lINTERNALFORCESINBENDINGExample10Trytoplotthei75彎曲內(nèi)力[例10]試作圖示剛架的內(nèi)力圖。P1P2alABC–N圖P2+Q圖P1+P1P1aM圖P1aP1a+P2l彎曲內(nèi)力[例10]試作圖示剛架的內(nèi)力圖。P1P2alAB76
Example11Asshowninthefigure,PandRareknown,trytoplotinternalforcediagramsofQ,MandN.OPRqmmxSolution:setuppolarcoordinates,OisthepoleandOBis
polaraxis,qdenotesthepositionofthesectionm-m.AB2、Planarrod:Rodthattheaxisisofaplanarcurve.
Methodtoplotinternal-forcediagramofacurvedrodisthesameasthatoftheplanarrigidframe.INTERNALFORCESINBENDINGExample11Asshowninth77彎曲內(nèi)力二、平面曲桿:軸線為一平面曲線的桿件。
內(nèi)力情況及繪制方法與平面剛架相同。[例11]已知:如圖所示,P及R
。試?yán)L制Q、M、N圖。OPRqmmx解:建立極坐標(biāo),O為極點(diǎn),OB
極軸,q表示截面m–m的位置。AB彎曲內(nèi)力二、平面曲桿:軸線為一平面曲線的桿件。[例11]78OPRqmmxABABOM圖OO+Q圖N圖2PRPP–+INTERNALFORCESINBENDINGOPRqmmxABABOM圖OO+Q圖N圖2PRPP–+IN79彎曲內(nèi)力OPRqmmxABABOM-diagramOO+Q-diagramN-diagram2PRPP–+彎曲內(nèi)力OPRqmmxABABOM-diagramOO+Q801、Methodtodeterminedirectlytheinternalforces:
Whenwedeterminetheinternalforcesinanarbitrarysection
A,
wecantaketheleftpartofsectionAasourstudyobjectandusethefollowingformulastocalculateinternalforces.where
PiandPj
arerespectivelyupwardanddownwardexternalforcesactedontheleftpart.DIAGRAMSOFSHEARINGSTRESSESANDBENDINGMOMENTS
EXERCISELESSONSABOUTINTERNALFORCESOFBENDINGINTERNALFORCESINBENDING1、Methodtodeterminedirectly81彎曲內(nèi)力一、內(nèi)力的直接求法:
求任意截面A上的內(nèi)力時(shí),以
A
點(diǎn)左側(cè)部分為研究對(duì)象,內(nèi)力計(jì)算式如下,其中Pi、Pj均為A
點(diǎn)左側(cè)的所有向上和向下的外力。剪力圖和彎矩圖彎曲內(nèi)力習(xí)題課彎曲內(nèi)力一、內(nèi)力的直接求法:剪力圖和彎矩圖彎曲內(nèi)力習(xí)題課82
Relationsamongtheshearingforce、thebendingmomentandtheexternalload:q(x)2、Simplemethodtoplotthediagram:
Themethodtoplotthediagramsbyusingtherelationbetweentheinternalforcesandtheexternalforcesandusingvaluesoftheinternalforcesatsomespecialpoints.INTERNALFORCESINBENDINGRelationsamongtheshearing83彎曲內(nèi)力剪力、彎矩與分布荷載間的關(guān)系:q(x)二、簡易作圖法:
利用內(nèi)力和外力的關(guān)系及特殊點(diǎn)的內(nèi)力值來作圖的方法。彎曲內(nèi)力剪力、彎矩與分布荷載間的關(guān)系:q(x)二、簡易作843、Principleofsuperposition:
Internalforcesinthestructureduetosimultaneousactionofmanyforcesareequaltothealgebrasumoftheinternalforcesduetoseparateactionofeachforce.4、Applicationsofsymmetryandantisymmetry:
Forthesymmetricstructureundertheactionofsymmetricloadsthediagramofitsshearingstressisantisymmetricandthediagramofbendingmomentissymmetric.ForthesymmetricstructureundertheactionofantisymmetricloadsthediagramofitsshearingstressissymmetricandthediagramofbendingmomentisantisymmetricINTERNALFORCESINBENDING3、Principleofsuperposition:
85彎曲內(nèi)力三、疊加原理:
多個(gè)載荷同時(shí)作用于結(jié)構(gòu)而引起的內(nèi)力等于每個(gè)載荷單獨(dú)作用于結(jié)構(gòu)而引起的內(nèi)力的代數(shù)和。四、對(duì)稱性與反對(duì)稱性的應(yīng)用:
對(duì)稱結(jié)構(gòu)在對(duì)稱載荷作用下,Q圖反對(duì)稱,M圖對(duì)稱;對(duì)稱結(jié)構(gòu)在反對(duì)稱載荷作用下,Q圖對(duì)稱,M圖反對(duì)稱。彎曲內(nèi)力三、疊加原理:
多個(gè)載荷同時(shí)作用于結(jié)構(gòu)而86INTERNALFORCESINBENDING5、Relationsbetweentheshearingforce,thebendingmomentandtheexternalloadExternalforceNoexternal-forcesegmentUniform-loadsegmentConcentratedforceConcentratedcoupleq=0q>0q<0CharacteristicsofQ-diagramCPCmHorizontalstraightlinexQQ>0QQ<0xInclinedstraightlineIncreasingfunctionxQxQDecreasingfunctionxQCQ1Q2Q1–Q2=PSuddenchangefromthelefttorightxQCNochangeInclinedstraightlinexMIncreasingfunctionxMDecreasingfunctioncurvesxMTomb-likexMBasin-likeFlexfromthelefttotheright
SuddenchangefromthelefttotherightOppositetomxMFlexoppositetoPMxM1M2INTERNALFORCESINBENDING5、Re87五、剪力、彎矩與外力間的關(guān)系外力無外力段均布載荷段集中力集中力偶q=0q>0q<0Q圖特征M圖特征CPCm水平直線xQQ>0QQ<0x斜直線增函數(shù)xQxQ降函數(shù)xQCQ1Q2Q1–Q2=PxQC自左向右突變無變化斜直線xM增函數(shù)xM降函數(shù)xMxMxMxM曲線墳狀盆狀自左向右折角折向與P反向M1
M2自左向右突變與m反彎曲內(nèi)力五、剪力、彎矩與外力間的關(guān)系外力無外力段均布載荷段集中力集中88Example1
Plotthebending-momentdiagramsofthebeamshowninthefollowingfigure.2PaaP=2PP+xMxM1xM2=+–++2Pa2PaPa(1)INTERNALFORCESINBENDINGExample1Plotthebending-m89彎曲內(nèi)力[例1]繪制下列圖示梁的彎矩圖。2PaaP=2PP+xMxM1xM2=+–++2Pa2PaPa(1)彎曲內(nèi)力[例1]繪制下列圖示梁的彎矩圖。2PaaP=2P90(2)aaqqqq=+xM1=xM+–+–xM23qa2/2qa2/2qa2INTERNALFORCESINBENDING(2)aaqqqq=+xM1=xM+–+–xM23qa2/291彎曲內(nèi)力(2)aaqqqq=+xM1=xM+–+–xM23qa2/2qa2/2qa2彎曲內(nèi)力(2)aaqqqq=+xM1=xM+–+–xM23q92(3)PL/2L/2PL/2=+PxM2xM=+PL/2PL/4PL/2xM1–+–PL/2INTERNALFORCESINBENDING(3)PL/2L/2PL/2=+PxM2xM=+PL/2PL93彎曲內(nèi)力(3)PL/2L/2PL/2=+PxM2xM=+PL/2PL/4PL/2xM1–+–PL/2彎曲內(nèi)力(3)PL/2L/2PL/2=+PxM2xM=+PL94(4)50kN2m2m20kNm=+xM2xM=+20kNm50kNmxM120kNm50kN20kNm20kNm++–20kNm30kNm20kNmINTERNALFORCESINBENDING(4)50kN2m2m20kNm=+xM2xM=+20kNm95彎曲內(nèi)力(4)50kNaa20kNm=+xM2xM=+20kNm50kNmxM120kNm50kN20kNm20kNm++–20kNm30kNm20kNm彎曲內(nèi)力(4)50kNaa20kNm=+xM2xM=+20k96yzhbSolution:(1)ShearingstressonthecrosssectionisExample2Thestructureisshowninthefigure.Trytoprove:(1)resultantoftheshearingstressesinanarbitrarycrosssectionisequaltotheshearingforceinthesamesection;(2)Resultantmomentofthenormalstressesinanarbitrarycrosssectionisequaltothebendingmomentinthesamesection;(3)whichforcecanbalancetheresultantoftheshearingstressinthelongitudinalsectionatmiddleheightbalanced?.
qINTERNALFORCESINBENDINGNormalstressonthecrosssectionisyzhbSolution:(1)Shearingstres97彎曲內(nèi)力yzhb解:(1)橫截面的剪應(yīng)力為:[例2]結(jié)構(gòu)如圖,試證明:(1)任意橫截面上的剪應(yīng)力的合力等于該面的剪力;(2)任意橫截面上的正應(yīng)力
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 社區(qū)護(hù)理試題(含答案)
- 2025鋼結(jié)構(gòu)人行天橋施工合同
- 課題申報(bào)參考:旅游賦能稻作梯田生態(tài)產(chǎn)品增值增效路徑研究
- 課題申報(bào)參考:跨模態(tài)時(shí)序信息融合的在線學(xué)習(xí)者細(xì)粒度情感分析與調(diào)節(jié)策略研究
- 【深度分析】可再生能源新政何以推動(dòng)綠證市場發(fā)展-國金證券
- 二零二五年度電梯智能化系統(tǒng)研發(fā)與應(yīng)用合同4篇
- 去健身房鍛煉身體的說說范文
- 2025年粵教新版九年級(jí)歷史上冊(cè)月考試卷含答案
- 2025年華師大新版八年級(jí)物理下冊(cè)月考試卷含答案
- 2025年新世紀(jì)版選擇性必修二化學(xué)下冊(cè)月考試卷
- 醫(yī)院醫(yī)療質(zhì)量管理委員會(huì)會(huì)議記錄五篇
- 《中國高考評(píng)價(jià)體系》解讀(化學(xué)學(xué)科)
- 公司發(fā)展能力提升方案
- 電梯安全守則及乘客須知
- IT硬件系統(tǒng)集成項(xiàng)目質(zhì)量管理方案
- 《容幼穎悟》2020年江蘇泰州中考文言文閱讀真題(含答案與翻譯)
- 水上水下作業(yè)應(yīng)急預(yù)案
- API520-安全閥計(jì)算PART1(中文版)
- 2023年廣東省廣州地鐵城際鐵路崗位招聘筆試參考題庫附帶答案詳解
- 商務(wù)提成辦法
- 直流電機(jī)電樞繞組簡介
評(píng)論
0/150
提交評(píng)論